điểm đối xứng với điểm M(-4;-4) qua trục Oy là điểm A'(__;__)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: E và H đối xứng nhau qua AB
nên AB là đường trung trực của EH
Suy ra: AB\(\perp\)EH tại M và M là trung điểm của EH
Ta có: H và F đối xứng nhau qua AC
nên AC là đường trung trực của HF
Suy ra: AC\(\perp\)HF tại N và N là trung điểm của FH
Xét tứ giác AMHN có
\(\widehat{MAN}=\widehat{ANH}=\widehat{AMH}=90^0\)
Do đó: AMHN là hình chữ nhật
Gọi S là trung điểm của M1M4. Ta đi c/m S là điểm cố định.
Trong \(\Delta\)M1M2M4 có: A là trung điểm M1M2; S là trung điểm M1M4 => AS là đường trung bình \(\Delta\)M1M2M4
=> AS = M2M4 /2 và AS // M2M4 (1)
Trong \(\Delta\)M2M3M4 có: B là trung điểm M2M3 ; C là trung điểm M3M4 => BC là đường trung bình \(\Delta\)M2M3M4
=> BC = M2M4 /2 và BC // M2M4 (2)
Từ (1) và (2) suy ra: AS = BC và AS // BC => Tứ giác ABCS là hình bình hành.
Ta thấy: Hình bình hành ABCS có 3 đỉnh A;B;C cố định nên đỉnh S cố định
=> Trung điểm của M1M4 là một điểm cố định (đpcm).
1. Vẽ điểm M' trên nửa mp có bờ là đường thẳng a không chứa điểm M sao cho đường thẳng a là đường trung trực của đoạn thẳng MM'.
~ Nhớ t.i.c.k ~
Gọi giao điểm của MN và Ox là điểm A; giao điểm của MN và Oy là điểm B.
Ta có: N là điểm đối xứng với M qua Ox (gt).
O \(\in\) Ox.
=> \(\left\{{}\begin{matrix}OA\perp MN.\\\text{ON = OM.(1)}\end{matrix}\right.\)
Ta có: P là điểm đối xứng với M qua Oy (gt).
O \(\in\) Oy.
=> \(\left\{{}\begin{matrix}OB\perp MP.\\\text{OM = OP.(2)}\end{matrix}\right.\)
Từ (1) và (2) => OP = ON = OM.
Xét tam giác NOM có: ON = OM (cmt).
=> Tam giác NOM cân tại O.
Mà OA là đường cao (do OA vuông góc MN).
=> OA là phân giác của ^NOM (Tính chất các đường trong tam giác cân).
=> ^NOA = ^AOM.
Xét tam giác MOP có: OP = OM (cmt).
=> Tam giác MOM cân tại O.
Mà OB là đường cao (do OB vuông góc MP).
=> OB là phân giác của ^MOP (Tính chất các đường trong tam giác cân).
=> ^MOB = ^BOP.
Ta có: ^NOA + ^AOM + ^MOB + ^BOP.
= 2. ^AOM + 2. ^MOB.
= 2. (^AOM + ^MOB).
= 2. ^AOB.
= 2. 90o = 180o.
=> 3 điểm N; O; P thẳng hàng.
Mà OP = ON (cmt).
=> O là trung điểm của NP.
=> P và N đối xứng nhau qua O (đpcm).
A'(4;-4)
a*(4;-4)