K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2019

9 tháng 8 2018

Chọn D

26 tháng 2 2017

22 tháng 12 2018

15 tháng 11 2018

Giải bài tập Đại số 11 | Để học tốt Toán 11

a) + A’D’ // BC và A’D’ = BC

⇒ A’D’CB là hình bình hành

⇒ A’B // D’C, mà D’C ⊂ (B’D’C) ⇒ A’B // (B’D’C) (1)

+ BB’ // DD’ và BB’ = DD’

⇒ BDD’B’ là hình bình hành

⇒ BD // B’D’, mà B’D’ ⊂ (B’D’C) ⇒ BD // (B’D’C) (2)

A’B ⊂ (BDA’) và BD ⊂ (BDA’); A’B ∩ BD = B (3)

Từ (1), (2), (3) suy ra : (BDA’) // (B’D’C).

b) Gọi O = AC ∩ BD

+ Ta có: O ∈ AC ⊂ (AA’C’C)

⇒ A’O ⊂ (AA’C’C).

Trong (AA’C’C), gọi A’O ∩ AC’ = G1.

G1 ∈ A’O ⊂ (A’BD)

⇒ G1 ∈ AC’ ∩ (BDA’).

+ Trong hình bình hành AA’C’C gọi I = A’C ∩ AC’

⇒ A’I = IC.

⇒ AI là trung tuyến của ΔA’AC

⇒   G 1   =   A ’ O   ∩   A C ’ là giao của hai trung tuyến AI và A’O của ΔA’AC

⇒   G 1  là trọng tâm ΔA’AC

⇒   A ’ G 1   =   2 . A ’ O / 3

⇒   G 1  cũng là trọng tâm ΔA’BD.

Vậy AC' đi qua trọng tâm G 1  của ΔA’BD.

Chứng minh tương tự đối với điểm G 2 .

c) *Vì G 1  là trọng tâm của ΔAA’C nên A G 1 / A I   =   2 / 3 .

Vì I là trung điểm của AC’ nên AI = 1/2.AC’

Từ các kết quả này, ta có : A G 1   =   1 / 3 . A C ’

*Chứng minh tương tự ta có : C ’ G 2   =   1 / 3 . A C ’

Suy ra : A G 1   =   G 1 G 2   =   G 2 C ’   =   1 / 3 . A C ’ .

d) (A’IO) chính là mp (AA’C’C) nên thiết diện cần tìm chính là hình bình hành AA’C’C.

1 tháng 7 2017

20 tháng 3 2019

 

Đáp án A

Theo giả thết ta có:  ∆ A A ' B ⊥ ⇒ A B ⊥ A ' B ∆ A ' C D ⊥ ⇒ C D ⊥ A ' D ⇒ A B ⊥ A ' D ⇒ A B ⊥ ( A ' B D ) ⇒ A B ⊥ B D ⇒ B D = A D 2 - A B 2 = 5 a 2 - a 2 = 2 a ⇒ S A B C D = 2 S A B D = A B . A D = a . 2 a = 2 a 2

Kẻ đường cao AH trong ∆ A'BD , góc giữa AB' và (ABCD) là góc A'BH= 45 °

Do B'C // A'D nên góc giữa B'C và  (ABCD) là góc A'DH= 45 ° ⇒ ∆ A ' B D vuông cân ⇒ A ' H = B D 2 = 2 a 2 = a từ đây tính được  V A B C D . A ' B ' C ' D ' = A ' H . S A B C D = a . 2 a 2 = 2 a 3

 

 

15 tháng 11 2019

Chọn C

18 tháng 2 2022

C

10 tháng 1 2017

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giả sử (AEF) cắt CC’ tại I. Khi đó ta có AE// FI, AF // EI nên tứ giác AEIF là hình bình hành. Trên cạnh CC’ lấy điểm J sao cho CJ = DF. Vì CJ song song và bằng DF nên JF song song và bằng CD. Do đó tứ giác CDFJ là hình chữ nhật. Từ đó suy ra FJ song song và bằng AB. Do đó AF song song và bằng BJ. Vì AF cũng song song và bằng EI nên BJ song song và bằng EI.

Từ đó suy ra IJ = EB = DF = JC = c/3

Ta có

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Nên V H = V A . BCIE + V A . DCIF

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vì thể tích khối hộp chữ nhật ABCD.A’B’C’D’ bằng abc nên

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đó suy ra Giải sách bài tập Toán 12 | Giải sbt Toán 12