Cho hàm số y = 3 x 2 3 - x . Chọn mệnh đề đúng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Sai lầm thường gặp: Tập xác định D = ℝ \ 3 .
Đạo hàm y ' = − 2 x − 3 2 ,0, ∀ x ∈ D ⇒ Hàm số nghịch biến trên ℝ \ 3 , hoặc làm số nghịch biến trên − ∞ ; 3 ∪ 3 ; + ∞ . Hàm số không có cực trị.
Tiệm cận đứng: x=3; tiệm cận ngang: y=1. Đồ thị hàm số nhận giao điểm I 3 ; 1 của hai đường tiệm cận làm tâm đối xứng.
Từ đó nhiều học sinh kết luận các mệnh đề 1 , 3 , 4 đúng và chọn ngay A.
Tuy nhiên đây là phương án sai.
Phân tích sai lầm:
Mệnh đề (1) sai, sửa lại: hàm số nghịch biến trên mỗi khoảng − ∞ ; 3 và 3 ; + ∞ . Học sinh cần nhớ rằng, ta chỉ học định nghĩa hàm số đồng biến (nghịch biến) trên khoảng, đoạn, nửa khoảng; chứ không có trên những khoảng hợp nhau.
Mệnh đề (2) sai. Đồ thị hàm số có một tiệm cận đứng là x=3, một tiệm cận ngang là y=1.
Mệnh đề 3 , 4 đúng.
Đáp án B
Sai lầm thường gặp: Ta thấy
y = x = x 2 , y ' = x x 2 = x x = 1 khi x > 0 − 1 khi x < 0
Từ đó học sinh kết luận ngay hàm số không có đạo hàm tại x=0 và cũng không đạt cực trị tại điểm x=0. Nhiều học sinh sẽ chọn ngay phương án A. Đây là đáp án sai.
Phân tích sai lầm: Nhiều học sinh ngộ nhận ngay điều kiện cần và đủ để hàm số có cực trị là “Nếu hàm số y=f(x) đạt cực trị tại x 0 thì f ' x 0 = 0 ”, từ đó nếu f ' x 0 ≠ 0 thì hàm số không đạt cực trị tại điểm x 0 . Tuy nhiên, điều này là sai lầm vì định lý trên chiều ngược lại có thể không đúng, tức chỉ đúng với một chiều.
Vậy, đối với hàm số đã cho ta có y ' = x x 2 = x x = 1 khi x > 0 − 1 khi x < 0 .
Dễ thấy đạo hàm y' đổi dấu qua điểm x=0 nên x=0 là điểm cực trị của hàm số, ở đây x=0là điểm cực tiểu của hàm số.
Quan sát đồ thị hàm số y = x hình vẽ bên để hiểu rõ hơn về điểm cực trị của hàm số này.
Đáp án D
Điều kiện cần để x 0 là điểm cực trị của hàm số f ( x ) là f ' ( x 0 ) = 0
Chọn D