Tìm số chính phương n có 3 chữ số, biết rằng n chia hết cho 5 và nếu nhân n cho 2 thì tổng các chữ số nó không thay đổi.
Làm nhanh và đừng quên giải thích nhé!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kế quả là số 225 vì nó chia hết cho 5 và nếu nhân với 2 thì kết quả sẽ là 450 tổng các chữ số = 9
mà 225 tổng các chữ số = 9 nên kêt quả sẽ là 225
Tìm quan hệ giữa 3 tập hợp :
Z ; N ; N*
CÂU NÀY SINH RA LÀ ĐỂ K
10 \(\le\)n \(\le\)99 => 21 < 2n + 1 < 199 và 31 < 3n + 1 < 298
Vì 2n + 1 là số lẻ mà 2n + 1 là số chính phương
=> 2n + 1 thuộc { 25 ; 49 ; 81 ; 121 ; 169 } tương ứng số n thuộc { 12; 24; 40; 60; 84 } ( 1 )
Vì 3n + 1 là số chính phương và 31 < 3n + 1 < 298
=> 3n + 1 thuộc { 49 ; 64 ; 100 ; 121 ; 169 ; 196 ; 256 ; 289 } tương ứng n thuộc { 16 ; 21 ; 33 ; 40 ; 56 ; 65 ; 85 ; 96 } ( 2 )
Từ 1 và 2 => n = 40 thì 2n + 1 và 3n + 1 đều là số chính phương
Đặt \(n^2=\)abc chia hết cho 5=> n2=abc chia hết cho 25
=>b,c thuộc25;75
Ta có abc chia hết cho 9
+bc=25 => a=2
+bc=75 => a=6
Vậy....
3.a)n và 2n có tổng các chữ số bằng nhau => hiệu của chúng chia hết cho 9
mà 2n-n=n=>n chia hết cho 9 => đpcm
Do n là số chính phương có 3 chữ số và n \(⋮\)3 ( vì 3 là 1 số nguyên tố )
=> \(\sqrt{n}\)\(⋮\)3 ( hoặc có thể gọi a là căn của n )
=> Các số \(\sqrt{n}\)có thể là 12 ; 15 ; 18 ; 21 ; 24 ; 27 ; 30
=> Số chính phương cần tìm có thể là 144 ; 225 ; 324 ; 441 ; 576 ; 729 ; 900
Có tổng các chữ số của tất cả các số trên đều = 9 chỉ có số 576 và số 729 có tổng các chữ số = 18
Lại có 144 x 2 = 288 có tổng các chữ số bằng 18
225 x 2 = 450 có tổng các chữ số bằng 9
324 x 2 = 648 có tổng các chữ số bằng 18
441 x 2 = 882 có tổng các chữ số bằng 18
576 x 2 = 1152 có tổng các chữ số bằng 9
729 x 2 = 1458 có tổng các chữ số bằng 18
900 x 2 = 1800 có tổng các chữ số bằng 9
Mà n x 2 có tổng các chữ số ko đổi
=> n = 225 ; 729 ; 900
Nếu đề là chia hết cho 5 thì giả tương tự chỉ có đáp án là 225 và 900 thôi
fag