So sánh
A = 10^15+1/10^16+1 và B = 10^16+1/10^17+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
10A=1016+10/1016+1=1+(9/1016+1)
10B=1017+10/1017+1=1+(9/1017+1)
Vì 9/1016+1 > 9/1017+1 nên 10A>10B,do đó A>B
TRƯỚC TIÊN TA SO SÁNH 10 VỚI 10B
10A=10^16+10/10^16+1=1\(\frac{9}{16+1}\)
10B=10^17+10/10+17+1=1\(\frac{9}{17+1}\)
VÌ 9/16+1>9/17+1
=>10A>10B
=>A>B
AI TÍCH MK ;MK TÍCH LẠI
A=10^15+1/10^16+1
=>10A=1+9/10^16+1
B=10^16+1/10^17+1
=>10B=1+9/10^17+1
=>10A>10B=>A>B
Vậy:A>B
\(10A=\frac{10^{16}+10}{10^{16}+1}=\frac{10^{16}+1+9}{10^{16}+1}=1+\frac{9}{10^{16}+1}\)
\(10B=\frac{10^{17}+10}{10^{17}+1}=\frac{10^{17}+1+9}{10^{17}+1}=1+\frac{9}{10^{17}+1}\)
Nhận thấy: \(\frac{9}{10^{17}+1}< \frac{9}{10^{16}+1}\)=> 10B < 10A
=> A > B
A = ( 10^15+1 ) / ( 10^16+1 ) => 10A = ( 10^16+10 ) / ( 10^16+1 ) = 1 + ( 9/10^15+1 )
B = ( 10^16+1 ) / ( 10^17+1 ) => 10B = ( 10^17+10 ) / ( 10^17+1 ) = 1 + ( 9/10^16+1 )
Vì 10^15+1 < 10^16+1 nên 9/10^15+1 > 9/10^16+1 => 1 + ( 9/10^15+1 ) > 1 + ( 9/10^16+1 )
Vậy A > B
\(A=\frac{10^{15}+1}{10^{16}+1}\)
\(\Rightarrow10A=\frac{10^{16}+10}{10^{16}+1}=\frac{\left(10^{16}+1\right)+9}{10^{16}+1}=1+\frac{9}{10^{16}+1}\)
\(A=\frac{10^{16}+1}{10^{17}+1}\)
\(\Rightarrow10B=\frac{10^{17}+10}{10^{17}+1}=\frac{\left(10^{17}+1\right)+9}{10^{17}+1}=1+\frac{9}{10^{17}+1}\)
Vì \(\frac{9}{10^{16}+1}>\frac{9}{10^{17}+1}\left(Do10^{16}+1< 10^{17}+1\right)\)
\(\Rightarrow10A>10B\)
\(\Rightarrow A>B\)
Ta có :
\(10A=\frac{10^{16}+10}{10^{16}+1}=\frac{\left(10^{16}+1\right)+9}{10^{16}+1}=1+\frac{9}{10^{16}+1}\)
\(10B=\frac{10^{17}+10}{10^{17}+1}=\frac{\left(10^{17}+1\right)+9}{10^{17}+1}=1+\frac{9}{10^{17}+1}\)
Vì \(10^{16}+1< 10^{17}+1\) nên \(\frac{9}{10^{16}+1}>\frac{9}{10^{17}+1}\) \(\Rightarrow1+\frac{9}{10^{16}+1}>1+\frac{9}{10^{17}+1}\)
=> 10A > 10B Do đó A > B
Vậy A > B
\(A=\frac{10^{15}+1}{10^{16}+1}\)
\(B=\frac{10^{16}+1}{10^{17}+1}\)
Ta có:
\(A=\frac{10^{15}+1}{10^{16}+1}=\frac{\left(10^{15}+1\right).10}{\left(10^{16}+1\right).10}=\frac{10^{16}+10}{10^{17}+10}=\frac{10^{16}+1+9}{10^{17}+1+9}\)
Vì \(B=\frac{10^{16}+1}{10^{17}+1}< 1\)
\(\Rightarrow B=\frac{10^{16}+1}{10^{17}+1}< \frac{10^{16}+1+9}{10^{17}+1+9}=A\)
Vậy B < A
bn nhấn vào đúng 0 sẽ ra đáp án