CHO TAM GIAC ABC CÂN TẠI A. TRÊN TIA ĐỐI CỦA BC LẤY ĐIỂM D, TRÊN TIA ĐỐI CÚA CB LẤY ĐIỂM E SAO CHO BD=CE. CHỨNG MINH TAM GIÁC ADE LÀ TAM GIÁC CÂN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình vẽ:
Giải:
Vì tam giác \(ABC\) cân tại \(A\):
\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)
\(\Rightarrow\widehat{ABD}=\widehat{ACE}\) ( góc bù )
Xét \(\Delta ABD\) và \(\Delta ACE\) có:
\(AB=AC \) \(\left(gt\right)\)
\(\widehat{ABD}=\widehat{ACE}\) \(\left(cmt\right)\)
\(BD=CE \) \(\left(gt\right)\)
Do đó: \(\Delta ABD=\Delta ACE\) \(\left(c.g.c\right)\)
\(\Rightarrow AD=AE\) ( cặp cạnh tương ứng )
\(\Rightarrow\Delta ADE\) cân tại \(A\).
Bài làm
Bạn tự vẽ hình nhé
Vì tam giác ABCABC cân tại A:
⇒ˆABC=ˆACB⇒ABC^=ACB^
⇒ˆABD=ˆACE⇒ABD^=ACE^ ( góc bù )
Xét ΔABDΔABD và ΔACEΔACE có:
AB=ACAB=AC (gt)
ˆABD=ˆACEABD^=ACE^ (cmt)
BD=CEBD=CE (gt)(gt)
Do đó: ΔABD=ΔACEΔABD=ΔACE (c.g.c)(c.g.c)
⇒AD=AE⇒AD=AE ( cặp cạnh tương ứng )
⇒ΔADE⇒ΔADE cân tại A
Chứng minh được tam giác ABD = tam giác ACE (c-g-c) => AD = AE
Từ đó tam giác ADE cân tại A.
Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
Do đó: ΔABD=ΔACE
=>AD=AE
Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
Do đó: ΔABD=ΔACE
=>AD=AE
theo đầu bài ta có góc abc=góc acb
mà góc ABD+ABC =180(kề bù)
góc ACE+ACB =180 (kề bù)
suy ra góc ABD =ACE
xét tam giác ABD và tam giác ACE
AB=AC(gt)
góc ABD=ACE
BD=CE(gt)
Do đó tam giác ABD=tam giác ACE (c.g.c)
nên AD=AE (2 cạnh tương ứng)
suy ra tam giác ADE cân
Ta có: tam giác ABC cân tại A
=> AB = AC
Góc ABC = góc ACB
=> góc ABD = góc ACE
Xét tam giác ADB và tam giác AEC, ta có:
AB = AC (gt) (1)
góc ABD = góc ACE (cmt) (2)
BD = CE (gt) (3)
Từ (1), (2) và (3), suy ra:
tam giác ADB = tam giác AEC (c.g.c)
=> AD = AE (2 cạnh tương ứng)
=> tam giác ADE cân tại A
*) Ta có: ΔABC cân tại A
BD = CE (giả thiết)
Suy ra: ΔABD = ΔACE (c.g.c)
⇒ AD = AE ( hai cạnh tương ứng)
*) Tam giác ADE có AD = AE nên tam giác này cân tại A (theo định nghĩa tam giác cân)
Bạn tự vẽ hình nha!
a.
Ta có:
mà B1 = C1 (tam giác ABC cân tại A)
=> B2 = C2 (1)
Xét tam giác ADB và tam giác AEC:
AB = AC (tam giác ABC cân tại A)
B2 = C2 (theo 1)
BD = CE (gt)
=> Tam giác ADB = ACE (c.g.c)
=> AD = AE (2 cạnh tương ứng)
=> Tam giác ADE
b.
Xét tam giác AHB vuông tại A và tam giác AKC vuông tại K:
AB = AC (tam giác ABC cân tại A)
A1 = A2 (tam giác ADB = tam giác AEC)
=> Tam giác AHB = Tam giác AKC (cạnh huyền - góc nhọn)
=> BH = CK (2 cạnh tương ứng)
AH = AK (2 cạnh tương ứng)
c.
Xét tam giác HDB vuông tại H và tam giác KEC vuông tại K:
BH = CK (theo câu b)
BD = CE (gt)
=> Tam giác HDB = Tam giác KEC (cạnh huyền - cạnh góc vuông)
Ta có:
DBH = IBC (2 góc đối đỉnh)
KCE = ICB (2 góc đối đỉnh)
mà DBH = KCE (tam giác HDB = tam giác KEC)
=> IBC = ICB
=> Tam giác IBC cân tại I
tam giác ABC cân =>góc B=góc C
=>góc ABD=góc ACE (dựa vào 2 góc kề bù)
Xét tam giác ABD và tam giác ACE có
AB=AC(tam giác ABC cân)
góc ABD= góc ACE(cmt)
BD=CE(GT)
=>tam giác ABD = tam giác ACE (c-g-c)
=>AD=AE(2 cạnh tương ứng)
=>tam giác ADE cân tại A