Xét các số phức z thỏa mãn z + 1 + 2 i + z - 2 - 4 i = 13 . Gọi m, M lần lượt là giá trị nhỏ nhất và lớn nhất của z + 1 - i . Tổng m + M bằng
A. 1 + 18
B. 1 + 18 3
C. 1 + 13
D. 1 + 13 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B.
Ta có:
Suy ra:
Xét điểm A(-2; 1) và B(4; 7) , phương trình đường thẳng AB: x - y + 3 = 0.
Gọi M(x; y) là điểm biểu diễn của số phức z trên mặt phẳng Oxy.
Khi đó ta có và ta thấy , suy ra quỹ tích M thuộc đoạn thẳng AB.
Xét điểm C( 1; -1); ta có , hình chiếu H của C trên đường thẳng AB nằm trên đoạn AB.
Do đó
Vậy
Đáp án A.
Giả sử z = a + b i , a , b ∈ ℝ . Khi đó
z − 3 + 4 i + z + 2 − i = 5 2 ⇔ a − 3 2 + b + 4 2 + a + 2 2 + b − 1 2 = 5 2
Coi I a ; b , P 3 ; − 4 , Q − 2 ; 1 và R 4 ; 3 , với chú ý P Q = 5 2 thì đẳng thức trên trở thành I P + I Q = P Q .
Đẳng thức trên chỉ xảy ra khi I thuộc đoạn PQ. Hơn nữa z − 4 − 3 i = I R .
Nhận thấy tam giác PQR là tam giác có ba góc nhọn nên
min R I = d R , P Q ; max R I = max R P , R Q
Bằng tính toán ta có m = 4 2 ; M = 5 2 . Suy ra M 2 + m 2 = 82 .
Đáp án A
Em có:
4 = z + 2 + i = z − 1 − 2 i + 3 + 3 i ≥ z − 1 − 2 i − 3 + 3 i
Chọn C.
Ta có |z – 1 – 2i| = 4. Hay |z – (1 + 2i)| = 4.
Đặt w = z + 2 + i
Gọi M( x; y) là điểm biểu diễn của số phức w trên mặt phẳng Oxy.
Khi đó, tập hợp điểm biểu diễn của số phức w là đường tròn tâm I, với I là điểm biểu diễn của số phức 1 + 2i + 2i + 2 + i = 3 + 3i.
Tức là tâm I(3; 3) , bán kính r = 4.
Do đó:
Vậy S = m2 + M2 = 68.
Chọn đáp án A