K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2021

Câu a:

Ta có: 

D là trung điểm của AC 

E là trung điểm của AB suy ra DE là đường trung bình của tam giác ABC. Theo tính chất đường trung bình, ta có:

=>DE=\(\dfrac{BC}{2}\)(1); DE//BC(2)Mặt khác K là trung điểm của CG ;H là trung điểm của BG suy ra kh là đường trung bình của tam giác CGB. Theo tính chất đường trung bình ta có: KH//BC(3);KH=\(\dfrac{BC}{2}\)(4)Từ (1)(4) => DE=KHTừ (3)(2) => DE//KHXét tứ giác DEHK có: DE song song với HK và DE bằng HK(cmt)=> tứ giác DEHK là hình bình hành(dhnb)tik nha 
17 tháng 11 2021

Hình đây nhé, tick cho k\mk nha

a: Xét tứ giác BDCN có 

M là trung điểm của BC

M là trung điểm của DN

Do đó: BDCN là hình bình hành

b: Xét tứ giác ANDB có 

DB//AN

DB=AN

Do đó: ANDB là hình bình hành

mà \(\widehat{NAB}=90^0\)

nên ANDB là hình chữ nhật

Suy ra: AD=BN

4 tháng 1 2022

 

a)

Vì D đối xứng N qua M (gt)

=> M là trung điểm của DM (đn)

Xét tứ giác BDCN có

M là trung điểm BC (gt)

M là trung điểm DM (cmt)

=> Tứ giác BDCN là hbh (dhnb hbh)

b) 

Vì BDCN là hbh( cmt)

=> BD//NC

=> BD//AN (1) và BD=NC

mà NC=AN (N là trung điểm AC)

=> BD=NC (bắc cầu) (2)

Mà BAC=90 (gt) (3)

Từ (1) và (2), (3)=> BDNA hcn (dhnb hcn)

=> AD=BN (t/c đường chéo hcn)

 

Xét tam giác ACE có

N là trung điểm AC (gt)

FN//EC (BN//DC)

=> F là trung điểm của AE ( đtb)

mà N là trung điểm của AC (gt)

=> FN là đtb của tam giác AEC ( đn)

=> FN= 1/2 EC (1)

Xét tam giác FNM=tam giác EMD (cgc)

=> DE=FN ( 2 góc t/ư)(2)

Từ (1) và (2) => DE=1/2 EC ( bc)

9 tháng 4 2016

a﴿ Tam giác ABC có MA=MC; NA=NB nên MN là đường trung bình của tam giác ABC

=> MN//BC; MN=1/2BC ﴾1﴿.

Tam giác BGC có PG=BP; QG=QC nên PQ là đường trung bình của tam giác BGC

=> PQ//BC; PQ=1/2BC ﴾2﴿.

từ ﴾1﴿ và ﴾2﴿

suy ra MN//PQ; MN=1/2PQ.

Tứ giác MNPQ có MN//PQ; MN=1/2PQ.

vậy MNPQ là hình bình hành.

b﴿ câu này là dạng tìm điều kiện là dạng khó nhất trong ba dạng là dễ nhất là chứng minh tứ giác là hình gì, mình chỉ cần thuộc lí thuyết dò sẽ ra; tiếp theo là tứ giác này là hình gì, mình phải tự tìm; cuối cùng là dạng tìm điều kiện để trở thành hình khác thì mình phải giả sử một đặc điểm để trở thành hình đó rồi tìm mối tương quan.

c1:Để hình bình hành MNPQ là hình chữ nhật, ta cần có thêm Một góc vuông.

Giả sử GÓc N=90 độ Nối AG. Vì NA=NB;PQ=PB nên NP là đường trung bình của tam giác ABG

=> NP//AG mà NP vuông góc với MN.

từ hai điều này suy ra AG cũng vuông góc với MN. lại có MN//BC﴾cmt﴿

từ hai điều này lại suy ra AG vuông góc với BC.

tam giác ABC có AG vừa là đường trung tuyến vừa là đường cao nên tam giác ABC cân tại A Vậy khi tam giác ABC cân tại A thì hình bình hành MNPQ là hình chữ nhật.

C2: Để hình bình hành MNPQ là hình chữ nhật, ta cần có thêm hai đuognừ chéo bằng nhau Giả sử MP=NQ ﴾1﴿

ta có: MNPQ là hình bình hành nên GN=GQ; GP=GM G là trọng tâm của tam giác ABC nên BP=1/3BM; CQ=1/3CN.

từ hai điều này suy ra: BP=1/2MP; CQ=1/2QN ﴾2﴿

Từ ﴾1﴿ và ﴾2﴿ suy ra MP+BP=NQ+CQ hay BM=CN

Tam giác ABC có hai đuognừ trung tuyến bằng nhau nên tam giác ABC cân tại A

 Vậy khi tam giác ABC cân tại A thì hình bình hành MNPQ là hình chữ nhật.

Bởi vì cách 2 nó có cái điều mà mình tự cm ở lớp 7 nên nhiều khi không hay

c﴿Nếu BM và CN vuông góc với nhau hay PM và QN cũng vuông góc với nhau.

Hình bình hành MNPQ có hai đuognừ chéo PM và QN vuông góc với nhau, nên MNPQ là hình thoi

Vậy nếu Nếu BM và CN vuông góc với nhau thì MNPQ là hình thoi 

 

26 tháng 5 2017

Đáp án là câu A.

22 tháng 5 2015

a) Tam giác ABC có MA=MC; NA=NB nên MN là đường trung bình của tam giác ABC

=> MN//BC; MN=1/2BC (1).

    Tam giác BGC có PG=BP; QG=QC nên PQ là đường trung bình của tam giác BGC

=> PQ//BC; PQ=1/2BC (2). 

từ (1) và (2) suy ra MN//PQ; MN=1/2PQ.

Tứ giác MNPQ có MN//PQ; MN=1/2PQ.

vậy MNPQ là hình bình hành.

b) câu này là dạng tìm điều kiện là dạng khó nhất trong ba dạng là dễ nhất là chứng minh tứ giác là hình gì, mình chỉ cần thuộc lí thuyết dò sẽ ra; tiếp theo là tứ giác này là hình gì, mình phải tự tìm; cuối cùng là dạng tìm điều kiện để trở thành hình khác thì mình phải giả sử một đặc điểm để trở thành hình đó rồi tìm mối tương quan. 

c1:Để hình bình hành MNPQ là hình chữ nhật, ta cần có thêm Một góc vuông.

Giả sử GÓc N=90 độ

Nối AG. Vì NA=NB;PQ=PB nên NP là đường trung bình của tam giác ABG=> NP//AG

                                                                                     mà                          NP vuông góc với MN. từ hai điều này suy ra AG cũng vuông góc với MN.

lại có MN//BC(cmt) từ hai điều này lại suy ra AG vuông góc với BC.

tam giác ABC có AG vừa là đường trung tuyến vừa là đường cao nên tam giác ABC cân tại A

Vậy khi tam giác ABC cân tại A thì hình bình hành MNPQ là hình chữ nhật.
C2: Để hình bình hành MNPQ là hình chữ nhật, ta cần có thêm hai đuognừ chéo bằng nhau

 Giả sử MP=NQ (1)

ta có: MNPQ là hình bình hành nên GN=GQ; GP=GM

 G là trọng tâm của tam giác ABC nên BP=1/3BM; CQ=1/3CN. từ hai điều này suy ra: BP=1/2MP; CQ=1/2QN (2)

Từ (1) và (2) suy ra MP+BP=NQ+CQ hay BM=CN

Tam giác ABC có hai đuognừ trung tuyến bằng nhau nên tam giác ABC cân tại A( điều này đã được chứng minh ở lớp 7, bạn không cần chứng minh lại)

Vậy khi tam giác ABC cân tại A thì hình bình hành MNPQ là hình chữ nhật.

Bởi vì cách 2 nó có cái điều mà mình tự cm ở lớp 7 nên nhiều khi không hay

c)Nếu BM và CN vuông góc với nhau hay PM và QN cũng vuông góc với nhau.

Hình bình hành MNPQ có hai đuognừ chéo PM và QN vuông góc với nhau, nên MNPQ là hình thoi,.

Vậy nếu Nếu BM và CN vuông góc với nhau thì MNPQ là hình thoi

8 tháng 9 2016

Răng chi mà dài dòng dữ rứa

15 tháng 10 2021

a: Xét tứ giác ABEC có

D là trung điểm của BC

D là trung điểm của AE

Do đó: ABEC là hình bình hành

31 tháng 10 2018

A B C D O F E H K I

14 tháng 11 2022

a: Xét tứ giác AECF có

O là trung điểm chung của AC và EF

nên AECF là hình bình hành

b: Xét tứ giác AKCH có

AK//CH

AH//CK

Do đó: AKCH là hình bình hành

Suy ra: AH=CK