K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2018

Đáp án A.

Kí hiệu như hình vẽ.

Ta thấy I K = r '  là bán kính đáy của hình chóp, A I = h  là chiều cao của hình chóp.

Tam giác  vuông tại K có IK là đường cao

⇒ I K 2 = A I . I M ⇒ r ' 2 = h . 2 r − h

Ta có V c o h p = 1 3 . π r ' 2 . h = 1 3 . π . h . h . 2 r − h = 4 3 π . h 2 . h 2 2 r − h .

Áp dụng bất đẳng thức Cauchy ta có  

h 2 . h 2 . 2 r − h ≤ h 2 + h 2 + 2 r − h 3 27 = 8 r 3 27

⇔ V c h o p ≤ 4 3 π . 8 r 3 27 = 32 81 . π r 3

Dấu bằng xảy ra khi h 2 = 2 r − h ⇔ h = 4 r 3   . Vậy ta chọn A

20 tháng 7 2017

Giải bài 3 trang 99 sgk Hình học 12 | Để học tốt Toán 12

Gọi H là tâm mặt đáy của hình nón, O là tâm mặt cầu (S), đường thẳng IH cắt mặt cầu (S) tại điểm K.

16 tháng 1 2017

24 tháng 8 2018

30 tháng 9 2018

Chọn 

20 tháng 2 2018

Phương pháp:  

+ Hình nón có chiều cao h và bán kính R thì có thể tích là 

Vì hình nón có bán kính R và chiều cao h bằng nhau nên h = R và thể tích hình nón đã cho là 

Khi đó H là tâm đường tròn ngoại tiếp tam giác SAB và H cũng là tâm mặt cầu ngoại tiếp hình nón đỉnh S.

Nên bán kính mặt cầu là HS = R nên thể tích hình cầu này 

30 tháng 8 2019

13 tháng 11 2019

Đáp án B

17 tháng 7 2019

5 tháng 9 2019