K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2018

a)   x 2   –   x   –   2   =   0

Có a = 1; b = -1; c = -2 ⇒ a – b + c = 0

⇒ Phương trình có hai nghiệm x = -1 và x = -c/a = 2.

Vậy tập nghiệm của phương trình là S = {-1; 2}

b) + Đường thẳng y = x + 2 cắt trục Ox tại (-2; 0) và cắt Oy tại (0; 2).

+ Parabol y   =   x 2  đi qua các điểm (-2; 4); (-1; 1); (0; 0); (1; 1); (2; 4).

Giải bài 55 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

c) Hoành độ giao điểm của hai đồ thị là nghiệm của phương trình:

Giải bài 55 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

Phương trình (*) chính là phương trình đã giải ở ý (a) Do đó hai nghiệm ở câu (a) chính là hoành độ giao điểm của hai đồ thị

10 tháng 5 2018

*Vẽ đồ thị hàm số y = 2 x 2

x -2 -1 0 1 2
y = 2 x 2 8 2 0 2 8

*Vẽ đồ thị hàm số y = -x + 3

Cho x = 0 thì y = 3 ⇒ (0; 3)

Cho y = 0 thì x = 3 ⇒ (3; 0)

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

9 tháng 4 2017

Giải bài 55 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9Giải bài 55 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9Giải bài 55 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

Điều này chứng tỏ rằng đồ thị đường thẳng cắt đồ thị parapol tại hai điểm có hoành độ lần lượt là x = -1; x= 2. Hai giá trị này cũng chính là nghiệm của phương trình x2 - x - 2 = 0 ở câu a).

31 tháng 10 2017

+ Đường thẳng y = x + 2 cắt trục Ox tại (-2; 0) và cắt Oy tại (0; 2).

+ Parabol y = x2 đi qua các điểm (-2; 4); (-1; 1); (0; 0); (1; 1); (2; 4).

Giải bài 55 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

22 tháng 7 2017

Hướng dẫn làm bài:

a) Giải phương trình: x2 – x – 2 = 0

∆ = (-1)2 – 4.1.(-2) = 1 + 8 > 0

√∆ = √9 = 3

⇒ x1 = -1; x2 = 2

b) Vẽ đồ thị hàm số

- Hàm số y = x2

+ Bảng giá trị:

- Hàm số y = x + 2

+ Cho x = 0 ⇒ y = 2 được điểm A(0,2)

+ Cho x = -2 ⇒ y = 0 được điểm B(-2;0)

Đồ thị hàm số:

c) Ta có phương trình hoành độ giao điểm của hai đồ thị là:

x2=x+2⇔x2−x−2=0⇔{x1=−1x2=2x2=x+2⇔x2−x−2=0⇔{x1=−1x2=2 

Điều này chứng tỏ rằng đồ thị đường thẳng cắt đồ thị parapol tại hai điểm có hoành độ lần lượt là x = -1; x= 2. Hai giá trị này cũng chính là nghiệm của phương trình x2 - x - 2 = 0 ở câu a).


 

Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}x+2y=1\\-2x+4y=-10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4y=2\\-2x+4y=-10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}8y=-8\\x+2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=1-2y=1-2\cdot\left(-1\right)=3\end{matrix}\right.\)

Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}x+2y=1\\-2x+4y=-10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4y=2\\-2x+4y=-10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}8y=-8\\x+2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=1-2y=1-2\cdot\left(-1\right)=3\end{matrix}\right.\)

Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}x+2y=1\\-2x+4y=-10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4y=2\\-2x+4y=-10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+2y=1\\8y=-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1-2y=3\\y=-1\end{matrix}\right.\)