K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2018

23 tháng 11 2019

Đáp án D

4 tháng 5 2018

Đáp án D

7 tháng 2 2017

29 tháng 11 2019

Đáp án đúng : A

12 tháng 10 2019

24 tháng 8 2017

Đáp án A

Gọi I là giao điểm của AC và BD.

Ta có S A ⊥ A B C D ⇒ S A ⊥ B D . Lại có A C ⊥ B D  (tính chất hình vuông).

Suy ra B D ⊥ S A C . Do đó hình chiếu của SB trên (SAC) là SI. Suy ra góc giữa đường thẳng SB và mặt phẳng (SAC) là góc giữa SB và SI, tức là góc ISB (do tam giác ISB vuông tại I nên I S B ^  là góc nhọn). Ta có:

S B = S A 2 + A B 2 = a 2 + a 2 = a 2 , I B = B D 2 = A 2 2

D o   đ ó   sin I S B = I B S B = 1 2 ⇒ I S B = 30 °

31 tháng 12 2019

Đáp án A.

Cách 1: Gọi I là giao điểm của AC và BD.

Ta có S A ⊥ A B C D ⇒ S A ⊥ B D . Lại có A C ⊥ B D  (tính chất hình vuông).

Suy ra  B D ⊥ S A C   . Do đó hình chiếu của SB trên   S A C là SI. Suy ra góc giữa đường thẳng SB và mặt phẳng S A C  là góc giữa SB và SI, tức là góc  I S B ^    (do tam giác ISB vuông tại I nên  I S B ^    là góc nhọn). Ta có:

S B = S A 2 + A B 2 = a 2 + a 2 = a 2 , I B = B D 2 = a 2 2

Do đó

 

sin I S B ^ = I B S B = 1 2 ⇒ I S B ^ = 30 °


Cách 2: (Phương pháp tọa độ hóa) Không mất tổng quát, gán tọa độ như sau:

A 0 ; 0 ; 0 , B 1 ; 0 ; 0 , D 0 ; 1 ; 0 , S 0 ; 0 ; 1 Khi đó C 1 ; 1 ; 0 .

Ta có S A → = 0 ; 0 ; − 1 , S C → = 1 ; 1 ; − 1 , S B → = 1 ; 0 ; − 1  

Đặt  n → = S A → , S C → = 1 ; − 1 ; 0 . Khi đó n →  là một VTPT của S A C .

 

Gọi   α là góc giữa đường thẳng SB và mặt phẳng S A C , β  là góc giữa vecto n →  và vecto S B → . Ta có

sin α = cos β = n → . S B → n → . S B → = 1 2 . 2 = 1 2 ⇒ α = 30 °  

18 tháng 2 2018

7 tháng 11 2017

Đáp án C

Phương pháp: Thể tích khối chóp V = 1 3 S d . h : h là chiều cao của khối chóp, S là diện tích đáy.

Phương pháp xác định góc giữa đường thẳng và mặt phẳng: Góc giữa đường thẳng và mặt phẳng chính là góc giữa đường thẳng đó và hình chiếu của nó trên mặt phẳng.