K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2018

Trong ΔABC ta có AC > AB (gt)

Suy ra: ∠B > ∠C (đối diện cạnh lớn hơn là góc lớn hơn)

Trong ΔAHB có ∠(AHB) = 90o

Suy ra: ∠B + ∠(HAB) = 90o (tính chất tam giác vuông) (1)

Trong ΔAHC có ∠(AHC) = 90o

Suy ra: ∠C + ∠(HAC) = 90o (tính chất tam giác vuông) (2)

Từ (1) và (2) suy ra: ∠B + ∠(HAB) = ∠C + ∠(HAC)

Mà ∠B > ∠C nên ∠(HAB) < ∠(HAC) .

14 tháng 4 2018

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Trong ΔABC ta có ∠AC > ∠AB (gt)

Suy ra: ∠B > ∠C (đối diện cạnh lớn hơn là góc lớn hơn)

Trong ΔAHB có ∠(AHB) = 90o

Suy ra: ∠B + ∠(HAB) = 90o (tính chất tam giác vuông) (1)

Trong ΔAHC có ∠(AHC) = 90o

Suy ra: ∠C + ∠(HAC) = 90o (tính chất tam giác vuông) (2)

Từ (1) và (2) suy ra: ∠B + ∠(HAB) = ∠C + ∠(HAC)

Mà ∠B > ∠C nên ∠(HAB) < ∠(HAC) .

3 tháng 3 2018

Ta có: AB < AC (gt)

Suy ra: HB < HC (đường xiên lớn hơn thì hình chiếu lớn hơn)

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

* Trường hợp Bnhọn (hình 83a)

Trong Δ ABC, ta có: AB < AC

Suy ra: ∠B > ∠C(đối diện với cạnh lớn hơn là góc lớn hơn)

Trong Δ AHB, ta có ∠(AHB) = 90o

Suy ra: ∠B + ∠(HAB) = 90o (tính chất tam giác vuông) (1)

Trong Δ AHC, ta có ∠(AHC) = 90o

Suy ra: ∠C + ∠(HAC) = 90o (tính chất tam giác vuông) (2)

Từ (1) và (2) suy ra: ∠B + ∠(HAB) = ∠C + ∠(HAC)

Mà ∠B > ∠C nên ∠(HAB) < ∠(HAC)

* Trường hợp Btù (hình 83b)

Vì điểm B nằm giữa H và C nên ∠(HAC) = ∠(HAB) + ∠(BAC)

Vậy ∠(HAB) < ∠(HAC).

18 tháng 5 2017

sorry , em ko biết đâu , em mới học lớp 5 thui

18 tháng 5 2017

đã học lớp 5 rùi á

24 tháng 5 2019

nhầm toán lớp 7 nha

24 tháng 5 2019


Ta có: AB < AC (gt) A B C H A B C H 1 1 2 1 2

Suy ra: HB < HC (đường xiên lớn hơn thì hình chiếu lớn hơn)

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

* Trường hợp Bnhọn (hình a)

Trong Δ ABC, ta có: AB < AC

Suy ra: ∠B > ∠C(đối diện với cạnh lớn hơn là góc lớn hơn)

Trong Δ AHB, ta có ∠(AHB) = 90o

Suy ra: ∠B + ∠(HAB) = 90o (tính chất tam giác vuông) (1)

Trong Δ AHC, ta có ∠(AHC) = 90o

Suy ra: ∠C + ∠(HAC) = 90o (tính chất tam giác vuông) (2)

Từ (1) và (2) suy ra: ∠B + ∠(HAB) = ∠C + ∠(HAC)

Mà ∠B > ∠C nên ∠(HAB) < ∠(HAC)

* Trường hợp Btù (hình b)

Vì điểm B nằm giữa H và C nên ∠(HAC) = ∠(HAB) + ∠(BAC)

Vậy ∠(HAB) < ∠(HAC).Ta có: AB < AC (gt)

Suy ra: HB < HC (đường xiên lớn hơn thì hình chiếu lớn hơn)

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

28 tháng 3 2018

a)  Xét  \(\Delta HAC\) và       \(\Delta ABC\) có:

\(\widehat{AHC}=\widehat{BAC}=90^0\)

\(\widehat{C}\)   CHUNG

suy ra:    \(\Delta HAC~\Delta ABC\)

b)  Áp dụng định lý Pytago vào tam giác vuông ABC ta có:

       \(BC^2=AB^2+AC^2\)

\(\Leftrightarrow\)  \(BC^2=6^2+8^2=100\)

\(\Leftrightarrow\)\(BC=\sqrt{100}=10\)

 \(\Delta HAC~\Delta ABC\)   \(\Rightarrow\)\(\frac{AH}{AB}=\frac{AC}{BC}\)

hay    \(\frac{AH}{6}=\frac{8}{10}\)   \(\Rightarrow\) \(AH=\frac{6.8}{10}=4,8\)

28 tháng 3 2018

mik làm dc câu a vs b giống bạn à 2 câu khi kh biết làm

24 tháng 3 2019

A B C H 1 2

Ta có: \(HB< HC\Rightarrow AB< AC\)(đường xiên ,hình chiếu)

Trong tam giác ABC có ; \(AB< AC\Rightarrow\widehat{C}< \widehat{B}\)(góc và cạnh đối diện trong tam giác )

\(\Rightarrow90^0-\widehat{C}>90^0-\widehat{B}\)   

Do \(AH\perp BC\Rightarrow\widehat{HAC}=90^0-\widehat{B};\widehat{HAC}=90^0-C\)

\(\Rightarrow\widehat{HAB}=\widehat{HAC}\)

24 tháng 3 2019

A B C H E

Trên HC lấy điểm E sao cho HB=HE.

Suy ra E nằm giữa H và C vì HE<HC.

Xét tam giác ABE có AE đồng thời là đường cao,đường trung tuyến nên tam giác ABE cân tại A.

\(\Rightarrow AB=AE,\widehat{ABE}=\widehat{AEB}\)

Do ^AEH là góc ngoài của tam giác AEC nên \(\widehat{AEH}>\widehat{ACB}\)

Suy ra \(\widehat{ABE}>\widehat{ACB}\)hay \(AB< AC\)(quan hệ giữa góc và cạnh đối diện)

Đến đây mới áp dụng như bạn được nhé.Đề đã cho AB<AC đâu!

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

21 tháng 9 2019

dễ vậy còn hỏi