K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2017

Đáp án A

5 tháng 9 2017

Đáp án A

Hướng dẫn giải: Ta có:

 

Có A H 2 + S A 2 = 5 a 2 4 = S H 2 ⇒ ∆ S A H  vuông tại A

Do đó mà S A ⊥ ( A B C D )  nên

 

  (Mặt phẳng (SAB) vuông góc với đáy (ABCD)) 

Trong tam giác vuông SAC, có

28 tháng 9 2019

 

 

 

 

 

Ta có

A H = 1 2 A B = a 2 ; S A = A B = a S H = H C = B H 2 + B C 2 = a 5 2  

Do A H 2 + S A 2 = 5 a 2 4 = S H 2  nên S A ⊥ A B

Do đó S A ⊥ A B C D  nên S C , A B C D ^ = S C A ^  

Trong tam giác vuông SAC có tan α = tan S C A ^ = S A A C = 1 2

Đáp án A

7 tháng 2 2019

9 tháng 10 2019

Đáp án đúng : A

9 tháng 12 2017

NV
19 tháng 1 2021

\(SA\perp\left(ABCD\right)\Rightarrow\widehat{SCA}=45^0\Rightarrow AC=SA=a\sqrt{2}\)

\(\Rightarrow AB=a\)

Gọi N là trung điểm SA \(\Rightarrow NM||SB\Rightarrow SB||\left(DMN\right)\)

\(\Rightarrow d\left(DM;SB\right)=d\left(SB;\left(DMN\right)\right)=d\left(B;\left(DMN\right)\right)\)

Mà M là trung điểm AB \(\Rightarrow d\left(B;\left(DMN\right)\right)=d\left(A;\left(DMN\right)\right)\)

Từ A kẻ AH vuông góc DM \(\Rightarrow DM\perp\left(NAH\right)\)

Trong mp (NAH), từ A kẻ \(AK\perp NH\Rightarrow AK=d\left(A;\left(DMN\right)\right)\)

\(\dfrac{1}{AH^2}=\dfrac{1}{AM^2}+\dfrac{1}{AD^2}\Rightarrow AH=\dfrac{AM.AD}{\sqrt{AM^2+AD^2}}=\dfrac{a\sqrt{5}}{5}\)

\(\dfrac{1}{AK^2}=\dfrac{1}{AN^2}+\dfrac{1}{AH^2}\Rightarrow AK=\dfrac{AN.AH}{\sqrt{AN^2+AH^2}}=\dfrac{a\sqrt{7}}{7}\)

18 tháng 4 2017

Đáp án A

Ta có C B ⊥ A B C B ⊥ S A ⇒ C B ⊥ ( S A B )  

Do đó S C ; S A B ^ = C S B ^ = α  

⇒ S B = a tan α = 5 a 10 ⇒ S A = S B 2 - A B 2 = a 6 2

Ta có S O ; A B C D ^ = S O A ^ trong đó  t a n S C A ^ = S A O A = a 6 2 a 2 2 = 3 .

26 tháng 5 2021

Gợi ý xem bạn làm được ko, ko thì để mình trình bày luôn

Kẻ \(KC\perp HD;KC\cap HD=\left\{K\right\}\)

\(\left\{{}\begin{matrix}KC\perp HD\\KC\perp SH\end{matrix}\right.\Rightarrow KC\perp\left(SHD\right)\Rightarrow\left(SKC\right)\perp\left(SHD\right)\)

Kẻ \(CI\perp SK;CI\cap SK=\left\{I\right\}\Rightarrow CI\perp\left(SHD\right)\Rightarrow CI\perp\left(SHD\right)\)

\(\Rightarrow\left(SC,\left(SHD\right)\right)=\left(SC,SI\right)\)