Tìm số tự nhiên x thỏa mãn x chia hết cho 4; x chia hết cho 6 và 0 < x < 50.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta tìm được BCNN (20; 35) = 140. Từ đó ta có:
BC (20;35) = {0; 140; 280; 420; 560;...}. Mà x < 500.
Vậy x ϵ{0; 140; 280; 420}
x chia hết cho 5 suy ra x là BCNN(5)
5=5
=> B(5): { 0,5,10,15,20,25,30,35,40,45,50,55,...........,705,800...}
mà x thuộc N, 700<x<800
Vây x= 705
ƯCLN (90; 150) = 30. Mà Ư (30) = {1; 2; 3; 5; 6; 10; 15; 30}.
Vì 5< x < 30 nên x ϵ{6; 10; 15;30}.
\(\overline{2x7}\) ⋮ \(\overline{x1}\) ( x # 0)
⇔ 200 + 10x + 7 ⋮ 10x + 1
⇔ (10x +1) + 206 ⋮ 10x + 1
⇔ 206 ⋮ 10x + 1
206 = 2.103
Ư(206) = { 1; 2; 103; 206}
10x + 1 \(\in\) {1; 2; 103; 206}
x \(\in\) { 0; \(\dfrac{1}{10}\); \(\dfrac{51}{5}\); \(\dfrac{41}{2}\)}
Vì x \(\in\) N nên x = 0 mà x #0 vậy S = \(\varnothing\)
x ϵ {12; 24; 36; 48).