Gieo một con súc sắc cân đối và đồng chất. Giả sử súc sắc xuất hiện mặt b chấm. Xác suất để phương trình x 2 + b x + 2 = 0 có hai nghiệm phân biệt là ?
A. 1 2 .
B. 1 3 .
C. 5 6 .
D. 2 3 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Phương pháp:
+) Phương trình ax2 + bx + c = 0 có hai nghiệm phân biệt ⇔ ∆ > 0
Cách giải:
Phương trình x2 + bx + 2 = 0 có hai nghiệm phân biệt ⇔ ∆ = b 2 - 8 > 0
Vì b là số chấm của con súc sắc nên
Vậy xác suất cần tìm là 4 6 = 2 3
Đáp án D
Phương trình x 2 + b x + 2 = 0 có hai nghiệm phân biệt
⇔ ∆ = b 2 - 8 > 0
⇒ b ∈ 3 ; 4 ; 5 ; 6
Xác suất cần tìm là 4 6 = 2 3
Đáp án C
Có 6 khả năng xảy ra khi tung súc sắc nên số phần tử của không gian mẫu là n ( Ω ) = 6 .
Gọi A là biến cố: Phương trình x 2 + b x + 2 = 0 (1) có hai nghiệm phân biệt.
Phương trình (1) có hai nghiệm phân biệt ⇔ b 2 − 8 > 0 ⇔ b ∈ 3 ; 4 ; 5 ; 6 ⇒ n A = 4 .
Vậy xác suất cần tính là p A = 2 3 .
Chọn D
Theo đề bài b là số chấm của con súc sắc nên b ∈ {1;2;3;4;5;6}
Để phương trình x 2 + 2bx + 4 = 0 có nghiệm thì
Kết hợp b ∈ [1;6] suy ra b ∈ {2;3;4;5;6} Suy ra xác suất để phương trình
x 2 + 2bx + 4 = 0 có nghiệm là 5 6
Đáp án A.
Ta thấy phương trình x 2 - b x + b - 1 = 0 có a + b + c = 0 nên có nghiệm x 1 = 1 , x 2 = b - 1 .
Vậy để phương trình có nghiệm lớn hơn 3 thì b - 1 > 3 ⇔ b > 4 ⇒ b ∈ 5 ; 6 .
Do đó xác suất để phương trình có nghiệm lớn hơn 3 là 2 6 = 1 3 . Ta chọn A.
Đáp án A.
Ta thấy phương trình x 2 − b x + b − 1 = 0 có a + b + c = 0 nên có nghiệm x 1 = 1, x 2 = b − 1 .
Vậy để phương trình có nghiệm lớn hơn 3 thì b − 1 > 3 ⇔ b > 4 ⇒ b ∈ 5 ; 6 .
Do đó xác suất để phương trình có nghiệm lớn hơn 3 là 2 6 = 1 3 . Ta chọn A.
Đáp án D.
Phương trình x 2 + b x + 2 = 0 có hai nghiệm phân biệt ⇔ Δ = b 2 − 8 > 0.
Mà 1 ≤ b ≤ 6 , b ∈ ℕ * ⇒ b ∈ 3 ; 4 ; 5 ; 6 .
Xác suất cần tìm là 4 6 = 2 3 .