K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2017

Phương trình x + 2 = 0 có nghiệm x = -2. Thay x = -2 vào phương trình

     m ( x 2   +   3 x   +   2 )   +   m 2 x   +   2   =   0 , ta có

    -2m2 + 2 = 0 ⇔ m = 1 hoặc m = -1

    Khi m = 1 phương trình thứ hai trở thành

     x 2   +   4 x   +   4   =   0

    ⇔ x = -2

    Khi m = -1 phương trình thứ hai trở thành

     - x 2   -   2 x   =   0

    ⇔ -x(x + 2) = 0

    Phương trình này có hai nghiệm x = 0 , x = -2.

    Vậy hai phương trình đã cho tương đương khi m = 1.

1 tháng 4 2018

Phương trình 3x – 2 = 0 có nghiệm x = 2/3, thay x = 2/3 vào phương trình

    (m + 3)x - m + 4 = 0 , ta có

    2(m + 3) / 3 - m + 4 = 0

    ⇔ -m / 3 + 6 = 0 ⇔ m = 18

    Với m = 18 phương trình (m + 3)x - m + 4 = 0 trở thành 21x = 14 hay x = 2/3

    Vậy hai phương trình tương đương khi m = 18.

6 tháng 4 2017

a) \(3x-2=0\Leftrightarrow x=\dfrac{2}{3}\)

Thay \(x=\dfrac{2}{3}\)

\(\left(m+3\right)\)\(\dfrac{2}{3}-m+4=0\)

\(\dfrac{2}{3}m+2-m+4=0\)

\(\dfrac{-1}{3}m+6=0\)

\(\dfrac{-1}{3}m=-6\)

\(m=18\)

5 tháng 6 2017

b) \(x+2=0\)\(\Leftrightarrow x=-2\).
Để hai phương trình tương đương thì phương trình \(m\left(x^2+3x+2\right)+m^2x+2=0\) có duy nghiệm là \(x=-2\).
Suy ra: \(m\left[\left(-2\right)^2+3.\left(-2\right)+2\right]+m^2.\left(-2\right)+2=0\)\(\Leftrightarrow m^2=1\)\(\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-1\end{matrix}\right.\).
Thay \(m=1\) vào phương trình \(m\left(x^2+3x+2\right)+m^2x+2=0\) ta được:
\(x^2+3x+2+x+2=0\)\(\Leftrightarrow\left(x+2\right)^2=0\)\(\Leftrightarrow x=-2\).
Vậy \(m=1\) thỏa mãn,
Thay \(m=-1\) vào phương trình:
\(-1\left(x^2+3x+2\right)+\left(-1\right)^2x+2=0\)\(\Leftrightarrow-x^2-2x=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\) .
Vậy \(m=-1\) không thỏa mãn.

5 tháng 6 2017

- Điều kiện cần:
Phương trình \(3x-1\) có nghiệm là \(x=\dfrac{1}{3}\).
Điều kiện xác định của \(\dfrac{3mx+1}{x-2}+2m-1=0\)\(x\ne2\).
Để cặp phương trình tương đương thì phương trình \(\dfrac{3mx+1}{x-2}+2m-1=0\) có nghiệm duy nhất là \(x=\dfrac{1}{3}\).
Từ đó suy ra: \(\dfrac{3m.\dfrac{1}{3}+1}{\dfrac{1}{3}-2}+2m-1=0\)\(\Leftrightarrow-\dfrac{3}{5}\left(m+1\right)+2m-1=0\)\(\Leftrightarrow\dfrac{7}{5}m-\dfrac{8}{5}=0\)\(\Leftrightarrow m=\dfrac{8}{7}\).
- Điều kiện đủ
Thay \(m=\dfrac{8}{7}\) vào phương trình \(\dfrac{3mx+1}{x-2}+2m-1=0\) ta được:
\(\dfrac{3.\dfrac{8}{7}x+1}{x-2}+2.\dfrac{8}{7}-1=0\)\(\Leftrightarrow\dfrac{24}{7}x+1+\dfrac{9}{7}\left(x-2\right)=0\)\(\dfrac{33}{7}x-\dfrac{11}{7}\)\(\Leftrightarrow x=\dfrac{1}{3}\).
Vậy \(m=\dfrac{8}{7}\) thì cặp phương trình tương đương.

5 tháng 6 2017

\(x^2+3x-4=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\).
Để cặp phương trình tương đương thì \(mx^2-4x-m+4=0\) có hai nghiệm là \(x=1\)\(x=-4\) .
Với \(x=1\) ta có: \(m.1^2-4.1-m+4=0\)\(\Leftrightarrow0=0\).
Vậy phương trình \(mx^2-4x-m+4=0\) luôn có một nghiệm \(x=1\).
Thay \(x=-4\) ta có: \(m.\left(-4\right)^2-4.\left(-4\right)-m+4=0\)\(\Leftrightarrow m=-\dfrac{4}{3}\).
Vậy \(m=-\dfrac{4}{3}\) thì cặp phương trình tương đương.

AH
Akai Haruma
Giáo viên
6 tháng 1 2023

Bài 9:

Không, vì $x+2=0$ có nghiệm duy nhất $x=-2$ còn $\frac{x}{x+2}=0$ ngay từ đầu đkxđ đã là $x\neq -2$ (cả 2 pt không có cùng tập nghiệm)

AH
Akai Haruma
Giáo viên
6 tháng 1 2023

Bài 8:

a. Khi $m=2$ thì pt trở thành:

$(2^2-9)x-3=2$

$\Leftrightarrow -5x-3=2$

$\Leftrightarrow -5x=5$

$\Leftrightarrow x=-1$ 

b.

Khi $m=3$ thì pt trở thành:

$(3^2-9)x-3=3$

$\Leftrightarrow 0x-3=3$

$\Leftrightarrow 0=6$ (vô lý)

c. Khi $m=3$ thì pt trở thành:

$[(-3)^2-9]x-3=-3$

$\Leftrightarrow 0x-3=-3$ (luôn đúng với mọi $x\in\mathbb{R}$)

Vậy pt vô số nghiệm thực.

3 tháng 5 2017

a) \(x+2=0\Leftrightarrow x=-2\)
Phương trình: \(\dfrac{mx}{x+3}=3m-1\) (*) có đkxđ: \(x\ne-3\)
Vì cặp phương trình tương đương nên phương trình (*) có nghiệm là x = -2:
\(\dfrac{2m}{2+3}+3m-1=0\) \(\Leftrightarrow\dfrac{2m}{5}+3m=1\)\(\Leftrightarrow m\left(\dfrac{2}{5}+3\right)=1\)
\(\Leftrightarrow\dfrac{17}{5}m=1\) \(m=\dfrac{5}{17}\)
Vậy \(m=\dfrac{5}{17}\) thì hai phương trình tương đương.

3 tháng 5 2017

b) Pt (1) \(x^2-9=0\) có hai nghiệm là: \(x=3;x=-3\).
Để cặp phương trình tương đương thì phương trình (2) \(2x^2+\left(m-5\right)x-3\left(m+1\right)=0\) có nghiệm là: \(x=3;x=-3\).
Suy ra: \(\left\{{}\begin{matrix}2.3^2+\left(m-5\right).3-3.\left(m+1\right)=0\\2.\left(-3\right)^2+\left(m-5\right).\left(-3\right)-3.\left(m+1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}0=0\\30-6m=0\end{matrix}\right.\) \(\Leftrightarrow m=5\)
Vậy m = 5 thì hai phương trình tương đương.

20 tháng 2 2018

a)    (x-1)(2x-1)=0

<=>2x^2 - 3x + 1 =0

Căn bằng hệ số ta có \(\hept{\begin{cases}m=2\\-\left(m+1\right)=-3\\1=1\end{cases}}\)<=>m=2