Gọi S là tập hợp tất cả các số tự nhiên gồm 5 chữ số đôi một khác nhau được lập từ các chữ số 5, 6, 7, 8, 9. Tính tổng tất các số thuộc tập S
A. 9333420
B. 46666200
C. 9333240
D. 46666240
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Số các số gồm 5 chữ số đôi 1 khác nhau là: 5! = 120 số
Trong mỗi hàng do các số có khả năng xuất hiện như nhau nên mỗi số xuất hiện 120:5=24 lần
S = ( 5 + 6 + 7 + 8 + 9 ) .24.11111 = 9333240
Đáp án C
Số các số gồm 5 chữ số đôi 1 khác nhau là: 5! = 120 số
Trong mỗi hàng do các số có khả năng xuất hiện như nhau nên mỗi số xuất hiện 120:5=24 lần
⇒ S= 9333240
Đáp án C
Số phần tử của tập S là 5! = 120 số.
Mỗi số 5, 6, 7, 8, 9 có vai trò như nhau và xuất hiện ở hàng đơn vị 4! = 24 lần
Tổng các chữ số xuất hiện ở hàng đơn vị là 4!.(5 + 6 + 7 + 8 + 9) = 840
Tương tự với các chữ số hàng chục, hàng tram, hàng nghìn và hàng chục nghìn.
Vậy tổng tất cả các số thuộc tập S là 840.(104+103+102+10+1) = 9333240
Tổng tập hợp \(S\) là:
\(S=\left\{5+6+7+8+9\right\}\\ S=35\)
Có \(A_8^5=6720\) số bất kì (kể cả bắt đầu bằng 0)
Do vai trò của các chữ số là như nhau, nên ở mỗi vị trí, mỗi chữ số xuất hiện: \(67220:5=1344\) lần
Ta chọn 1 số làm đại diện tính toán, ví dụ số 3, do số 3 xuất hiện ở các hàng chục ngàn, ngàn, trăm, chục, đơn vị mỗi hàng đều 1344 lần nên tổng giá trị của số 3 là:
\(1344.\left(3.10000+3.1000+3.100+3.10+3.1\right)=1344.11111.3\)
Do vai trò các chữ số là giống nhau nên tổng các chữ số là:
\(S_1=1344.11111.\left(0+3+4+5+6+7+8+9\right)\)
Bây giờ ta lập các số có số 0 đứng đầu, nó đồng nghĩa với việc lập số có 4 chữ số từ các chữ số 3,4,5,6,7,8
Số số lập được là: \(A_7^4=840\) số
Do vai trò các chữ số như nhau nên mỗi vị trí mỗi chữ số xuất hiện \(840:4=210\) lần
Tương tự như trên, ta có tổng trong trường hợp này là:
\(S_2=210.1111.\left(3+4+5+6+7+8+9\right)\)
Giờ lấy \(S_1-S_2\) là được
Không gian mẫu: \(A_6^3=120\)
Gọi số cần lập có dạng \(\overline{abc}\)
Số chia hết cho 5 \(\Rightarrow c=5\) (1 cách chọn)
Chọn và hoán vị cặp ab: \(A_5^2=20\) cách
\(\Rightarrow1.20=20\) số chia hết cho 5
Xác suất: \(P=\dfrac{20}{120}=\dfrac{1}{6}\)
Đáp án C
Số các số gồm 5 chữ số đôi 1 khác nhau là: 5! = 120 số
Trong mỗi hàng do các số có khả năng xuất hiện như nhau nên mỗi số xuất hiện 120 : 5 = 24 lần
S = (5 + 6 + 7 + 8 + 9).24.11111 = 9333240