Cho hình chóp đều S.ABCD có cạnh đáy 2a, góc giữa mặt bên và mặt đáy bằng 60 0 .Tính thể tích của khối chóp S.ABCD.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Gọi O là tâm hình vuông ABCD, M là trung điểm CD.
Khi đó SO là đường cao hình chóp, góc SMO là góc giữa mặt bên và mặt đáy của hình chóp.
Chọn B.
Phương pháp: Sử dụng định nghĩa hình chóp đều và góc giữa hai mặt phẳng..
Cách giải: Vì S.ABCD là hình chóp đều nên ABCD là hình vuông. Suy ra:
Gọi O là tâm của hình vuông ABCD
ABCD là hình vuông cạnh
tam giác SOC vuông tại O
Thể tích khối chóp S.ABCD là:
Chọn: D
Đáp án D
Gọi O là giao AC và BD, M là trung điểm CD
Vì S.ABCD là hình chóp đều
=> O là hình chiếu của S trên (ABCD)
Ta có: OM ⊥ CD và SM ⊥ CD
Vậy
Hướng dẫn: B
Gọi M là trung điểm củaCD, O là giao điểm của AC và BD. Ta có: