K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2018

Đáp án B

Do các cạnh bên bằng nhau nên hình chiếu của S lên (ABCD) phải trùng với tâm H của hình vuông ABCD.

Dễ thấy I là trung điểm của SC, vì BD SC, nên BD//(P). Do đó EF // BD. Để ý rng EF đi qua trọng tâm J của tam giác SDB.

30 tháng 3 2018

Đáp án C

 

Gọi  O = A C ∩ B D , G = A O ∩ A C '

Ta có A C ⊥ ( S B D )  mặt khác S C ⊥ B ' D ' ⇒ B ' D ' ⊥ ( S A C ) ⇒ B ' D ' / / B D  

Theo Định lý Talet ta có S B ' B ' B = S D ' D ' D = S G G O = 2 ⇒ G  là trọng tâm ∆ S A C ⇒ C '  là trung điểm SC

Vậy  V S A B ' C ' D ' V S A B C D = V S A B ' C ' + V S A C ' D ' V S A B C D = 1 2 ( V S A B ' C ' V S A B C + V S A C ' D ' V S A C D ) = 1 2 S B ' . S C ' S B . S C + S C ' . S D ' S C . S D

4 tháng 4 2018

9 tháng 12 2018

Chọn B.

15 tháng 1 2017

18 tháng 6 2018

Đáp án D.

Gọi H là tâm của hình vuông   A B C D ;    S B H ^ = 60 0 ;    H B = a 2 2

Khi đó  là trọng tâm tam giác SAC.

Qua G dựng đường thẳng song song với BD cắt SB;SD lần lượt là E và F.

Do tính chất đối xứng ta có:

V S . A E M F V S . A B C D = V S . A E M V S . A B C = S E S B . S M S C = 2 3 . 1 2 = 1 3 .

 Mặt khác   V A . A B C D = 1 3 S H . S A B C D = 1 3 H B tan 60 0 . a 2 = a 3 6 6 .

Do đó   V S . A E M F = 1 3 . a 3 6 6 = a 3 6 18 .

7 tháng 5 2019

1 tháng 1 2019

15 tháng 10 2019

1 tháng 4 2017

ình chóp S.ABCD là hình chóp đều nên chân H của đường cao SH chính là tâm của đáy. Mặt phẳng đi qua AM và song song với BD cắt mặt phẳng (SDB) theo một giao song song với BD, hay EF // BD.

Ta dựng giao tuyến EF như sau : Gọi I là giao điểm của AM và SH Qua I ta dựng một đường thẳng song song với BD, đường này cắt SB ở E và cắt SD ở F. Ta có góc SAH= 60°. Tam giác cân SAC có SA = SC và SAC = 60° nên nó là tam giác đều: I là giao điểm của các trung tuyến AM và SH nên:

dap-an-bai-9