Cho tam giác ABC có \(\widehat{A}\)= \(90^o\), đường cao AD. Kẻ DN // AB (N\(\in\)AC), DM // AC. (M\(\in\)AB). Gọi O là giao điểm của AD và MN.
a. CM: AD=MN
b. Gọi I, K lần lượt là trung điểm của BD và DC. CM: IMNK là hình thang vuông
c. Kẻ AH \(\perp\) MN, AH cắt BC tại E. CM: BE = EC