Tính giá trị của biểu thức: P = 1 + i 3 2 + 1 - i 3 2
(Đề thi tốt nghiệp THPT năm 2008)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P = ( 1 + i 3 ) 2 + ( 1 - i 3 ) 2 = 1 + 2i√3 – 3 + 1 −2i√3 − 3 = −4
TXĐ: D = R\{0}
f′(x) = 0 ⇔ x = 3 hoặc x = -3
Hàm số nghịch biến trong các khoảng (-3;0), (0;3) và đồng biến trong các khoảng (− ∞ ;3), (3;+ ∞ )
Bảng biến thiên:
Ta có: [2;4] ⊂ (0; + ∞ ); f(2) = 6,5; f(3) = 6; f(4) = 6,25
Suy ra
min f(x) = f(3) = 6; max f(x) = f(2) = 6,5
TXĐ: D = R\{0}
f′(x) = 0 ⇔ x = 3 hoặc x = -3
Hàm số nghịch biến trong các khoảng (-3;0), (0;3) và đồng biến trong các khoảng (− ∞ ;3), (3;+ ∞ )
Bảng biến thiên:
Ta có: [2;4] ⊂ (0; + ∞ ); f(2) = 6,5; f(3) = 6; f(4) = 6,25
Suy ra
min f(x) = f(3) = 6; max f(x) = f(2) = 6,5
TXĐ: D = R\{0}
f′(x) = 0 ⇔ x = 3 hoặc x = -3
Hàm số nghịch biến trong các khoảng (-3;0), (0;3) và đồng biến trong các khoảng (− ∞ ;3), (3;+ ∞ )
Bảng biến thiên:
Ta có: [2;4] ⊂ (0; + ∞ ); f(2) = 6,5; f(3) = 6; f(4) = 6,25
Suy ra
min f(x) = f(3) = 6; max f(x) = f(2) = 6,5
TXĐ: D = R
y’ = 3 x 2 – 4x + m; y’ = 0 ⇔ 3 x 2 – 4x + m = 0
Phương trình trên có hai nghiệm phân biệt khi:
∆ ’ = 4 – 3m > 0 ⇔ m < 4/3 (∗)
Hàm số có cực trị tại x = 1 thì :
y’(1) = 3 – 4 + m = 0 ⇒ m = 1 (thỏa mãn điều kiện (∗) )
Mặt khác, vì:
y’’ = 6x – 4 ⇒ y’’(1) = 6 – 4 = 2 > 0
cho nên tại x = 1, hàm số đạt cực tiểu.
Vậy với m = 1, hàm số đã cho đạt cực tiểu tại x = 1
TXĐ: D = R
y’ = 3 x 2 – 4x + m; y’ = 0 ⇔ 3 x 2 – 4x + m = 0
Phương trình trên có hai nghiệm phân biệt khi:
∆’ = 4 – 3m > 0 ⇔ m < 4/3 (∗)
Hàm số có cực trị tại x = 1 thì :
y’(1) = 3 – 4 + m = 0 ⇒ m = 1 (thỏa mãn điều kiện (∗) )
Mặt khác, vì:
y’’ = 6x – 4 ⇒ y’’(1) = 6 – 4 = 2 > 0
cho nên tại x = 1, hàm số đạt cực tiểu.
Vậy với m = 1, hàm số đã cho đạt cực tiểu tại x = 1
a) TXĐ: D = R
Sự biến thiên:
y′ = 3 x 2 – 6x = 3x(x – 2)
y′=0 ⇔
Hàm số đồng biến trên mỗi khoảng (– ∞ ;0), (2;+ ∞ )
Hàm số nghịch biến trên khoảng (0; 2).
Hàm số đạt cực đại tại x = 0 ; y C Đ = y(0) = 0
Hàm số đạt cực tiểu tại x = 2; y C T = y(2) = -4.
Giới hạn:
Điểm uốn: y” = 6x – 6, y” = 0 ⇔ x = 1; y(1) = –2
Suy ra đồ thị có điểm uốn I(1; -2)
Bảng biến thiên:
Đồ thị:
Đồ thị cắt trục hoành tại O(0;0), A(3;0). Đồ thị đi qua điểm B(-1;-4); C(2;-4).
b) x 3 – 3 x 2 – m = 0 ⇔ x 3 – 3 x 2 = m x 3 – 3 x 2 – m = 0 ⇔ x 3 – 3 x 2 = m (∗)
Phương trình (∗) có 3 nghiệm phân biệt khi và chỉ khi đường thẳng y = m cắt (C) tại 3 điểm phân biệt. Từ đó suy ra: – 4 < m < 0.
(1 − i)z + (2 − i) = 4 − 5i
⇔ (1 − i)z = 4 − 5i – 2 + i
⇔(1 − i)z = 2 − 4i
(1 − i)z + (2 − i) = 4 − 5i
⇔ (1 − i)z = 4 − 5i – 2 + i
⇔(1 − i)z = 2 − 4i
P = 1 + i 3 2 + 1 - i 3 2 = 1 + 2i 3 – 3 + 1 −2i 3 − 3 = −4
P = 1 + i 3 2 + 1 - i 3 2 = 1 + 2i 3 – 3 + 1 −2i 3 − 3 = −4