a) Tìm BC của 8 và 10
b) Tìm BC của 6; 24 và 40
c) Tìm BC của 8; 15 và 20.
d) Tìm các bội chung nhỏ hơn 500 của 30 và 45.
e)Tìm số tự nhiên a nhỏ nhất khác 0, biết rằng a ⋮ 15 và a ⋮ 18 .
f) Tìm các bội chung có ba chữ số của 63 ; 35 ; 105 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có: 8 = 2 3 ; 10 = 2.5
BCNN(8; 10) = 2 3 .5 = 40
BC(8; 10) =B(40)= { 0; 40; 80; 120;………}
b, Ta có: 6 =2.3; 24= 2 3 . 3; 40 = 2 3 .5
BCNN( 6; 24; 40) = 2 3 .3. 5= 120
BC( 6; 24; 40)= B(120) ={ 0; 120; 240; 360….}
c, Ta có: 8 = 2 3 ; 15 = 3.5; 20 = 2 2 .5
BCNN(8; 15;20) = 2 3 .3.5 = 120
BC( 8; 15; 20)= B(120) ={ 0; 120; 240; 360….}
d, Ta có: 30 = 2.3.5; 45 = 3 2 .5
BCNN(30; 45) = 2. 3 2 .5 = 90
BC (30; 45) và nhỏ hơn 500 = { 0; 90; 180; 270; 360;480}
e, Ta có: a nhỏ nhất khác 0, biết rằng a ⋮ 15 và a ⋮ 18
=> a = BCNN (15; 18)
Có: 15 = 3.5; 18 = 2. 3 2
BCNN(15; 18) = 2. 3 2 .5 = 90
Vậy a = 90
f, Ta có: 63 = 3 2 .7; 35 = 5.7; 105 = 3.5.7
BCNN(63; 35; 105) = 3 2 .5.7 = 315
BC(63; 35; 105) và nhỏ hơn 1000 = { 0; 315; 630; 945}
a: ABCD là hình thang có MN//AB
nên AM/MD=BN/NC
=>AM/4=BN/1=6/5
=>AM=4,8cm
b: ABCD là hình thag có MN//AB//CD
nên BN/NC=AM/MD
=>4/2=AM/3
=>AM=6cm
=>AD=9cm
c; BN/NC=AM/MD=1
=>BN=5cm
a) \(BM=\dfrac{1}{2}BC=\dfrac{1}{2}.10=5\left(cm\right)\)
Tam giác ABM có MD là p/giác
\(\Rightarrow\dfrac{AD}{BD}=\dfrac{AM}{BM}=\dfrac{6}{5}\)
b) Tam giác AMC có ME là p/giác
\(\Rightarrow\dfrac{MC}{AM}=\dfrac{EC}{AE}\)
Mà: MC = BM (GT)
\(\Rightarrow\dfrac{BM}{AM}=\dfrac{EC}{AE}\)
c) Có: \(\dfrac{AD}{BD}=\dfrac{AM}{BM}\left(cmt\right)\) (1)
Tam giác AMC có ME là p/giác
\(\Rightarrow\dfrac{AE}{EC}=\dfrac{AM}{MC}\)
Mà: BM = MC (GT)
\(\Rightarrow\dfrac{AE}{EC}=\dfrac{AM}{BM}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\dfrac{AD}{BD}=\dfrac{AE}{EC}\)
=> DE // BC
a) Ta có: M là trung điểm của BC(gt)
nên \(MB=\dfrac{BC}{2}=\dfrac{10}{2}=5\left(cm\right)\)
Xét ΔAMB có MD là đường phân giác ứng với cạnh AB(Gt)
nên \(\dfrac{AD}{BD}=\dfrac{AM}{BM}\)(Tính chất đường phân giác của tam giác)
hay \(\dfrac{AD}{BD}=\dfrac{6}{5}\)