Cho hình cầu (S) tâm I bán kính R. Một mặt phẳng (P) cắt mặt cầu (S) theo đường tròn giao tuyến (L). Khối nón đỉnh I và đáy là đường tròn (L) có thể tích lớn nhất là a π R 3 b 3 ( a , b ∈ N ) . Hỏi a+ b bằng?
A. 10
B. 9
C. 11
D. 13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi H là tâm mặt đáy của hình nón, O là tâm mặt cầu (S), đường thẳng IH cắt mặt cầu (S) tại điểm K.
Đáp án A.
Kí hiệu như hình vẽ.
Ta thấy I K = r ' là bán kính đáy của hình chóp, A I = h là chiều cao của hình chóp.
Tam giác vuông tại K có IK là đường cao
⇒ I K 2 = A I . I M ⇒ r ' 2 = h . 2 r − h
Ta có V c o h p = 1 3 . π r ' 2 . h = 1 3 . π . h . h . 2 r − h = 4 3 π . h 2 . h 2 2 r − h .
Áp dụng bất đẳng thức Cauchy ta có
h 2 . h 2 . 2 r − h ≤ h 2 + h 2 + 2 r − h 3 27 = 8 r 3 27
⇔ V c h o p ≤ 4 3 π . 8 r 3 27 = 32 81 . π r 3
Dấu bằng xảy ra khi h 2 = 2 r − h ⇔ h = 4 r 3 . Vậy ta chọn A
Đáp án B
Gọi chiều cao và bán kính đáy của hình trụ nội tiếp mặt cầu lần lượt là h, r
Ta có tâm mặt cầu là trung tâm của đường nối 2 tâm các đường tròn đáy của hình trụ
Khi đó, bán kính mặt cầu ngoại tiếp khối trụ là R 2 = r 2 + h 2 4
Thể tích khối trụ là V = πr 2 h = π 4 4 R 2 - h 2 . h
Theo bất đẳng thức Cosi cho 3 số nguyên dương, ta có
4 R 2 - h 2 4 R 2 - h 2 2 h 2 ≤ 4 R 2 - h 2 + 4 R 2 - h 2 + 2 h 2 3 27
Nên 4 R 2 - h 2 . h 2 ≤ 256 R 6 27 ⇒ V ≤ π 4 4 R 2 - h 2 h ≤ 4 π 3 9 R 3
Dấu bằng xảy ra khi và chỉ khi 4 R 2 - h 2 = 2 h 2 ⇔ h = 2 R 3 3 .