K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2021

a+b−cc=b+c−aa=c+a−bb

 

⇒a+b−cc+1=b+c−aa+1=c+a−bb+1

 

⇒a+bc=b+ca=c+ab

 

+)Nếu a+b+c=0⇒a+b=−c;b+c=−a;c+a=−b

 

⇒B=a+ba.c+ac.b+cb=−ca.−bc.−ab=−(abc)abc=−1

 

Nếu a+b+c≠0

 

Áp dụng tính chất dãy tỉ số bằng nhau ta có 

a+bc=b+ca=c+ab=2(a+b+c)a+b+c=2

 

⇒a+b=2c

 

      b+c=2a

 

       c+a=2b

 

⇒B=2ca.2bc.2ab=2.2.2=8

13 tháng 11 2021

Ta có: \(\dfrac{a}{b+c}=\dfrac{b}{a+c}\Rightarrow\dfrac{b+c}{a}=\dfrac{a+c}{b}\left(1\right)\)

\(\dfrac{c}{a+b}=\dfrac{b}{a+c}\Rightarrow\dfrac{a+b}{c}=\dfrac{a+c}{b}\left(2\right)\)

Từ (1), (2) \(\Rightarrow\dfrac{b+c}{a}=\dfrac{a+b}{c}=\dfrac{a+c}{b}\)

7 tháng 1 2021

\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+d}+\dfrac{d}{d+a}=2\)

\(1-\dfrac{a}{a+b}-\dfrac{b}{b+c}+1-\dfrac{c}{c+d}-\dfrac{d}{d+a}=0\)

\(\dfrac{b}{a+b}-\dfrac{b}{b+c}+\dfrac{d}{c+d}-\dfrac{d}{d+a}=0\)

\(\dfrac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\dfrac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)

<=>b(c+d)(d+a)+d(a+b)(b+c)=0 (vì c≠a)

<=>abc-acd+bd2-b2d=0

<=> (b-d)(ac-bd)=0 <=> ac - bd =0 (vì b≠d) <=> ac = bd

Vậy abcd =(ac)(bd)=(ac)2

NV
4 tháng 1 2021

\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{a+b+c}{2\left(a+b+c\right)}=\dfrac{1}{2}\)

\(\Rightarrow\dfrac{b+c}{a}=\dfrac{c+a}{b}=\dfrac{a+b}{c}=2\)

\(\Rightarrow P=2+2+2=6\)

27 tháng 9 2021

Ta có: \(a=b+c\Rightarrow c=a-b\)

\(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}=\sqrt{\dfrac{b^2c^2+a^2c^2+a^2b^2}{a^2b^2c^2}}=\sqrt{\dfrac{b^2\left(a-b\right)^2+a^2\left(a-b\right)^2+a^2b^2}{a^2b^2c^2}}=\sqrt{\dfrac{b^4+a^2b^2-2ab^3+a^4+a^2b^2-2a^3b+a^2b^2}{a^2b^2c^2}}=\sqrt{\dfrac{\left(a^2+b^2\right)^2-2ab\left(a^2+b^2\right)+a^2b^2}{a^2b^2c^2}}=\sqrt{\dfrac{\left(a^2+b^2-ab\right)^2}{a^2b^2c^2}}=\left|\dfrac{a^2+b^2-ab}{abc}\right|\)

=> Là một số hữu tỉ do a,b,c là số hữu tỉ

NV
9 tháng 3 2021

\(\Leftrightarrow\dfrac{2a^2}{b^2}+\dfrac{2b^2}{c^2}+\dfrac{2c^2}{a^2}=\dfrac{2a}{c}+\dfrac{2c}{b}+\dfrac{2b}{a}\)

\(\Leftrightarrow\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}-\dfrac{2a}{c}\right)+\left(\dfrac{a^2}{b^2}+\dfrac{c^2}{a^2}-\dfrac{2c}{b}\right)+\left(\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}-\dfrac{2b}{a}\right)=0\)

\(\Leftrightarrow\left(\dfrac{a}{b}-\dfrac{b}{c}\right)^2+\left(\dfrac{a}{b}-\dfrac{c}{a}\right)^2+\left(\dfrac{b}{c}-\dfrac{c}{a}\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{b}-\dfrac{b}{c}=0\\\dfrac{a}{b}-\dfrac{c}{a}=0\\\dfrac{b}{c}-\dfrac{c}{a}=0\end{matrix}\right.\) \(\Leftrightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}\Leftrightarrow a=b=c\)