Đường thẳng d có một vectơ pháp tuyến là n → = - 2 ; - 5 . Đường thẳng Δ vuông góc với d có một vectơ chỉ phương là:
A. u 1 → = ( 5 ; - 2 )
B. u 2 → = ( - 5 ; 2 )
C. u 3 → = ( 2 ; 5 )
D. u 4 → = ( 2 ; - 5 )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Đường thẳng d có một vectơ pháp tuyến là n → = ( - 2 ; - 5 ) nên đường thẳng này có 1 VTCP là: n → = 5 ; - 2
Do đường thẳng d và ∆ song song với nhau nên vecto n → = ( 5 ; - 2 ) cũng là VTCP của đường thẳng ∆.
Đáp án A
Do hai đường thẳng vuông góc với nhau thì VTPT của đường thẳng này là VTCP của đường thẳng kia và ngược lại.
Do đường thẳng ∆ vuông góc với đường thẳng (d) nên nhận VTPT của đường thẳng ( d) là VTCP. Do đó: một VTCP của đường thẳng ∆ là ( 2; -1)
Đáp án B
Ta có nhận xét:
Hai đường thẳng vuông góc với nhau thì VTPT của đường thẳng này là VTCP của đường thẳng kia và ngược lại.
Do đường thẳng ∆ vuông góc với đường thẳng (d) nên nhận VTCP của đường thẳng (d) là VTPT. Do đó: 1 VTPT của đường thẳng ∆ là ( -2; -3).
Mà hai vectơ (-2; -3) và ( 4; 6) là 2 vectơ cùng phương nên vectơ (4; 6) cũng là VTPT của đường thẳng ∆.
Đáp án A
Đường thẳng ( d) có VTCP là u → = ( 3 ; - 4 )
Nên đường thẳng (d) có 1 VTPT là ( 4; 3) .
Do 2 đườg thẳng ∆ và (d) song song với nhau nên chúng có cùng VTPT và cùng VTCP .
Suy ra đường thẳng ∆ có 1 VTPT là (4; 3) .
Chọn D
Đường thẳng (d) có VTPT là (2;3) và VTCP là (3; -2)
Do đường thẳng (d) và ∆ vuông góc với nhau nên đường thẳng ∆ nhận VTCP của đường thẳng (d) làm VTPT.
Do đó đường thẳng ∆ có VTPT là (3; -2) .
Chọn C.
Đường thẳng Δ vuông góc với d nhận VTPT của d là VTCP