Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của SA, SC. Biết thể tích của khối chóp S.BMN là a 3 . Tính thể tích khối chóp S.ABCD
A. a 3
B. 4 a 3
C. 8 a 3
D. 16 a 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo công thức Simsons ta có:
\(\dfrac{V_{SMNPQ}}{V_{SABCD}}=\dfrac{2V_{SMNP}}{2V_{SABC}}=\dfrac{SM}{SA}.\dfrac{SN}{SB}.\dfrac{SP}{SC}=\dfrac{1}{2}.\dfrac{1}{2}.\dfrac{1}{2}=\dfrac{1}{8}\)
Chọn B.
Phương pháp
Sử dụng công thức tính tỉ số thể tích đối với khối chóp tam giác
Chú ý: Công thức tỉ số thể tích trên chỉ áp dụng đối với chóp tam giác.
Chọn đáp án A
Áp dụng công thức
Suy ra V S . A B C D = a 2 2 ( đ v t t )
Đáp án D
Hướng dẫn giải:
Ta có S A B C = a 2 2 , S A = S B 2 - A B 2 = a 3
V S . A B C = 1 3 S A . S A B C = 1 3 a 3 . a 2 2 = a 3 3 6
Ta lại có V B . N A M V B . C A S = B N B C . B M B S = 1 4
⇒ V B . N A M = 1 4 V B . C A S
Kết luận V A . S C N M = V S . A B C - V B . N A M = a 3 3 8
Đáp án C
Theo tỉ số thể tích ta có: