K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2017

31 tháng 3 2020

a) Giao điểm d1 và d2

\(\left\{{}\begin{matrix}x+3y-1=0\\x-3y-5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=1\end{matrix}\right.\) => A (-2;1)

Đường thẳng d3 có \(\overrightarrow{n_{d3}}=\left(2;-1\right)\) . Delta vuông góc với d3 nên có

\(\overrightarrow{u_{\Delta}}=\left(2;-1\right)\) \(\Rightarrow\overrightarrow{n_{\Delta}}=\left(-1;-2\right)\)

PTđt delta

\(-1\left(x+2\right)+\left(-2\right)\left(y-1\right)=0\)

\(\Leftrightarrow-x-2y+1=0\)

b) Tương tự, tìm được đường thẳng delta đi qua B(-1;-1)

Hệ số k = tan45 = 1 .

Tự xử nốt

NV
26 tháng 3 2022

Giao điểm A của d1 và d2 là nghiệm:

\(\left\{{}\begin{matrix}x+2y+1=0\\x+y-5=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=11\\y=-6\end{matrix}\right.\)

\(\Delta\) song song d3 nên nhận (2;3) là 1 vtpt, nên có pt:

\(2\left(x-11\right)+3\left(y+6\right)=0\Leftrightarrow2x+3y-4=0\)

NV
13 tháng 4 2019

Giao điểm A của d1 và d2 là nghiệm của hệ:

\(\left\{{}\begin{matrix}x-2y+5=0\\2x-3y+7=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\) \(\Rightarrow A\left(1;3\right)\)

Do \(d//d_3\Rightarrow d\) nhận \(\overrightarrow{n_d}=\left(3;4\right)\) là 1 vtpt

Phương trình d:

\(3\left(x-1\right)+4\left(y-3\right)=0\Leftrightarrow3x+4y-15=0\)

11 tháng 3 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vẽ đường thẳng ( d 1 ) là đồ thị hàm số y = -x + 2

Cho x = 0 thì y = 2 ⇒ (0; 2)

Cho y = 0 thì x = 2 ⇒ (2; 0)

Vẽ đường thẳng ( d 2 ) là đồ thị hàm số Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Cho x = 0 thì y = 0 ⇒ (0; 0)

Cho x = 3 thì y = -2 ⇒ (3; -2)

Hai đường thẳng ( d 1 ) và ( d 2 ) cắt nhau tại A(6; -4). Thay các giá trị x và y này vào phương trình đường thẳng ( d 3 ), ta có:

3.6 + 2.(-4) = 18 – 8 = 10.

Vậy x và y thỏa phương trình 3x + 2y = 10 nên (x; y) = (6; -4) là nghiệm của phương trình 3x + 2y = 10.

13 tháng 2 2016

d1 có 1 vtpt là \(\overrightarrow{n1}\)(2;-1);d2 có 1 vtpt là \(\overrightarrow{n2}\)(3;6)

Ta có \(\overrightarrow{n1}\)\(\times\)\(\overrightarrow{n2}\)=2\(\times\)3-1\(\times\)6=0 nên d1 vuông góc d2 và d1 cắt d2 tại I(I khác P)

Gọi d là đườg thẳng đi qua P;d:A(x-2)+B(y+1)=0\(\Leftrightarrow\)Ax+By-2A+B=0

d cắt d1;d2 tạo thành một tam giác cân có đỉnh I\(\Leftrightarrow\)d tạo với d1(hoặc d2) một góc 45

\(\Leftrightarrow\)\(\frac{\left|2A-B\right|}{\sqrt{A^2+B^2}\sqrt{2^2+\left(-1\right)^2}}\)=\(\cos45\)

\(\Leftrightarrow\)\(3A^2\)-8AB-\(3B^2\)=0

\(\Leftrightarrow\)A=3B hoặc B=-3A

Nếu A=3B ta có d:3x+y-5=0

Nếu B=-3A to có d:x-3y-5=0

Vậy......

NV
24 tháng 2 2021

Gọi \(M\left(x;y\right)\) là điểm cách đều \(d_1\) và \(d_2\)

\(\Rightarrow\dfrac{\left|2x-y+5\right|}{\sqrt{2^2+\left(-1\right)^2}}=\dfrac{\left|3x+6y-1\right|}{\sqrt{3^2+6^2}}\)

\(\Leftrightarrow\left|6x-3y+15\right|=\left|3x+6y-1\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-9y+16=0\\9x+3y+14=0\end{matrix}\right.\)

\(\Rightarrow\) Phương trình đường thẳng cần tìm có dạng:

\(\left[{}\begin{matrix}9\left(x+2\right)+3\left(y-0\right)=0\\3\left(x+2\right)-9\left(y-0\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+y+6=0\\x-3y+2=0\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn

NV
25 tháng 4 2019

Gọi M là giao điểm của \(d_1\)\(d_2\Rightarrow\) toạ độ M là nghiệm của hệ:

\(\left\{{}\begin{matrix}3x-2y+5=0\\2x+4y-7=0\end{matrix}\right.\) \(\Rightarrow M\left(-\frac{3}{8};\frac{31}{16}\right)\)

Do \(d//d_3\Rightarrow d\) nhận \(\overrightarrow{n_d}=\left(3;4\right)\) là 1 vtpt

Phương trình d:

\(3\left(x+\frac{3}{8}\right)+4\left(y-\frac{31}{16}\right)=0\Leftrightarrow24x+32y-53=0\)

Chọn B