K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2018

26 tháng 6 2015

Đặt ƯCLN\(\left(16n+5;24n+7\right)=d\)

=> 16n + 5 chia hết cho d và 24n + 7 chia hết cho d.

=> 3.(16n + 5) - 2.(24n + 7) chia hết cho d.

=> 48n + 15 - 38n + 14 chia hết cho d

=> 1 chia hết cho d

=> d = 1

  suy ra điều phải chứng tỏ
 

29 tháng 3 2017

Gọi d là UCLN(16n+5;24n+7)

=>16n+5 chia hết cho d và 24n+7 chia hết cho d

Vì:16n+5 chia hết cho d=>48n+15 chia hết cho d

     24n+7 chia hết cho d=>48n+14 chia hết cho d

Ta có:(48n+15)-(48n+14) chia hết cho d

         =          1 chia hết cho d

Vì d=1 nên \(\frac{18n+5}{24n+7}\)là phân số tối giản với mọi n.

Mình làm bài này rồi,đề thi HSG lớp 6 có bài này.

26 tháng 1 2017

1 tháng 5 2021

Giả sử UCLN(14n+3;21n+5)=d

14n+3 chia hết cho d nên 42n+9 chia hết cho d

21n+5 chia hết cho d nên 42n+10 chia hết cho d

vay 1 chia hết cho d, d=1

Vậy phân số tối giản

Giải:

Gọi ƯC(14n+3;21n+5)=d

⇒14n+3 ⋮ d              ⇒3.(14n+3) ⋮ d            ⇒42n+9 ⋮ d

    21n+5 ⋮ d                2.(21n+5) ⋮ d               42n+10 ⋮ d

⇒(42n+10)-(42n+9) ⋮ d

⇒   1 ⋮ d

⇒d=1

Vậy 14n+3/21n+5 là phân số tối giản.

Chúc bạn học tốt!

9 tháng 3 2017

e gio biet lam chua ha cu

ki ten 

thuc

dinh trong thuc

12 tháng 4 2023

Vvvv

 

6 tháng 1 2022

Giải:

Gọi  ƯCLN (2n+3;3n+5)=d

Ta có:

2n+3:d =>3. (2n+3):d

3n+5:d=> 2. (3n+5):d

=> [3. (2n+3) - 2.(3n+5)]:d

=>(6n+9 - 6n-10): d

=> -1:d

=> d={1,-1}

Tick mình nha

6 tháng 1 2022

cảm ơn bạn

 

goi d la UCLN (7n+10;5n+9) ( d thuoc N sao)

=>7n+10 chia hết cho d;5n+9 chia hết cho d

=>35n+50 chia het cho d;35n+63

=>-13 chia hết d

Ma 7n+10 ko chia het cho d => 7n+10/5n+9 la ps toi gian

3 tháng 4 2017

Gọi d là UCLN( 7.n +10, 5.n+9)

=> 7n +10 chia hết d 

     5n +9 chia hết d

ta có ; 5(7n +10) - 7(5n +9) = 50 - 63 = -13 CHIA HẾT CHO d

Mặt khác : 7n+10 là số lẻ , 5n +9 là số chẵn => phân số đó tối giản

Mình chỉ làm tắt  thôi nhé có gì lên lớp hỏi cô giáo

6 tháng 5 2021

Gọi ƯCLN(2n + 5,3n + 7) = d (d \(\inℤ;d\ne0\))

=> Ta có :\(\hept{\begin{cases}2n+5⋮d\\3n+7⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(2n+5\right)⋮d\\2\left(3n+7\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}6n+15⋮d\\6n+14⋮d\end{cases}}\Rightarrow\left(6n+15\right)-\left(6n+14\right)⋮d\)

=> \(1⋮d\Rightarrow d=1\)