Chứng minh phân thức 5 n + 7 7 n + 10 là tối giản với mọi số tự nhiên n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hướng dẫn giải:
Gọi d là ƯCLN của 2n + 5 và 3n + 7
⇒ (2n + 5)⋮ d và (3n + 7)⋮ d
⇒ [3(2n + 5) - 2(3n + 7)] = 1⋮ d
⇒ d = 1 hoặc d = -1
Vậy phân thức đã cho tối giản với ∀n ∈ N
Gọi d=ƯCLN(7n+10;5n+7)
=>35n+50-35n-49 chia hếtcho d
=>1 chia hết cho d
=>d=1
=>PSTG
Gọi \(d=ƯC\left(6n+7;3n+2\right)\) với \(d\ge1;d\in N\)
\(\Rightarrow\left\{{}\begin{matrix}6n+7⋮d\\3n+2⋮d\end{matrix}\right.\)
\(\Rightarrow6n+7-2\left(3n+2\right)⋮d\)
\(\Rightarrow3⋮d\) \(\Rightarrow\left[{}\begin{matrix}d=1\\d=3\end{matrix}\right.\)
Mà \(\left\{{}\begin{matrix}6n+7=3\left(2n+2\right)+1⋮̸3\\3n+2⋮̸3\end{matrix}\right.\) \(\Rightarrow d\ne3\)
\(\Rightarrow d=1\Rightarrow6n+7\) và \(3n+2\) nguyên tố cùng nhau
Hay \(\dfrac{6n+7}{3n+2}\) tối giản với mọi n tự nhiên
Gọi d là ƯC(6n+7;3n+2) với d≠0;d ≥1(d∈N)
⇒ 6n+7 ⋮ d
3n+2 ⋮ d
⇒6n+7 - 2(3n+2)⋮ d
⇒3⋮d
d∈(1;3)
Vậy 6n+7/3n+2 là phân số tối giản vì là nguyên tố cùng nha
Hướng dẫn giải:
Gọi d là ƯCLN của 7n - 5 và 3n - 2
⇒ (7n - 5)⋮ d và (3n - 2)⋮ d
⇒ [3(7n - 5) - 7(3n - 2)] = -1⋮ d
⇒ d = 1 hoặc d = -1
Vậy phân thức đã cho tối giản với ∀n ∈ N
goi d la UCLN (7n+10;5n+9) ( d thuoc N sao)
=>7n+10 chia hết cho d;5n+9 chia hết cho d
=>35n+50 chia het cho d;35n+63
=>-13 chia hết d
Ma 7n+10 ko chia het cho d => 7n+10/5n+9 la ps toi gian
Gọi d là UCLN( 7.n +10, 5.n+9)
=> 7n +10 chia hết d
5n +9 chia hết d
ta có ; 5(7n +10) - 7(5n +9) = 50 - 63 = -13 CHIA HẾT CHO d
Mặt khác : 7n+10 là số lẻ , 5n +9 là số chẵn => phân số đó tối giản
Mình chỉ làm tắt thôi nhé có gì lên lớp hỏi cô giáo
Gọi d=ƯCLN(2n+5;3n+7)
=>6n+15-6n-14 chia hết cho d
=>1 chia hết cho d
=>d=1
=>ĐPCM
Hướng dẫn giải:
Gọi d là ƯCLN của 12n + 1 và 30n + 2
⇒ (12n + 1)⋮ d và (30n + 2)⋮ d
⇒ [5(12n + 1) - 2(30n + 2)] ⋮ d
⇒ 1 ⋮ d, với ∀n ∈ N
⇒ d = 1 hoặc d = -1
Vậy phân thức đã cho tối giản với ∀n ∈ N
Hướng dẫn giải:
Gọi d là ƯCLN của 2n + 1 và 2 n 2 - 1
⇒ (2n +1)⋮ d và ( 2 n 2 - 1 ) ⋮ d
⇒ [ n ( 2 n + 1 ) - ( 2 n 2 - 1 ) ] = n + 1 ⋮ d
⇒ 2(n + 1) ⋮ d ⇒ (2n + 2) – (2n + 1) = 1 ⋮ d
⇒ d = 1 hoặc d = -1
Vậy phân thức đã cho tối giản với ∀n ∈ N
Hướng dẫn giải:
Gọi d là ƯCLN của 5n + 7 và 7n + 10
⇒ (5n + 7)⋮ d và (7n + 10)⋮ d
⇒ [7(5n + 7) - 5(7n + 10)] = -1⋮ d
⇒ d = 1 hoặc d = -1
Vậy phân thức đã cho tối giản với ∀n ∈ N