Chứng minh rằng với những giá trị thích hợp của biến x biểu thức sau có giá trị là một hằng số
A = \(\left(\dfrac{x}{x-y}-\dfrac{y}{x+y}\right):\left(\dfrac{x+y}{x-y}-\dfrac{2xy}{x^2-y^{\text{2}}}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=\left(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}\right):\left(x-y\right)+\dfrac{2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
\(=\dfrac{\left(x-2\sqrt{xy}+y\right)}{x-y}+\dfrac{2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
\(=\dfrac{\sqrt{x}-\sqrt{y}+2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
=1
Lời giải:
\(A=\left(\frac{x}{y-z}+\frac{y}{z-x}+\frac{z}{x-y}\right)\left(\frac{1}{y-z}+\frac{1}{z-x}+\frac{1}{x-y}\right)-\frac{x}{(y-z)(z-x)}-\frac{x}{(y-z)(x-y)}-\frac{y}{(z-x)(x-y)}-\frac{y}{(z-x)(y-z)}-\frac{z}{(x-y)(y-z)}-\frac{z}{(x-y)(z-x)}\)
\(=0-\frac{x(x-y)+x(z-x)+y(y-z)+y(x-y)+z(z-x)+z(y-z)}{(x-y)(y-z)(z-x)}\)
\(=0-\frac{x^2+xz+y^2+xy+z^2+zy-(xy+x^2+yz+y^2+zx+z^2)}{(x-y)(y-z)(z-x)}=0-\frac{0}{(x-y)(y-z)(z-x)}=0\)
\(=\dfrac{2}{xy}:\left(\dfrac{x-y}{xy}\right)^2-\dfrac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\dfrac{2}{xy}.\left(\dfrac{xy}{x-y}\right)^2-\dfrac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\dfrac{2xy}{\left(x-y\right)^2}-\dfrac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\dfrac{2xy-x^2-y^2}{\left(x-y\right)^2}\)
\(=\dfrac{-\left(x^2-2xy+y^2\right)}{\left(x-y\right)^2}=\dfrac{-\left(x-y\right)^2}{\left(x-y\right)^2}=-1\)
vậy .........................................
\(ĐK:x\ne\pm y\\ A=\dfrac{x^2+xy-xy+y^2}{\left(x-y\right)\left(x+y\right)}:\dfrac{x^2+2xy+y^2-2xy}{\left(x-y\right)\left(x+y\right)}\\ A=\dfrac{x^2+y^2}{\left(x+y\right)\left(x-y\right)}\cdot\dfrac{\left(x+y\right)\left(x-y\right)}{x^2+y^2}=1\left(đpcm\right)\)