Cho tứ diện ABCD, biết hai tam giác ABC và BCD là hai tam giác cân có chung cạnh đáy BC. Gọi I là trung điểm của cạnh BC. Khẳng định nào đúng trong các khẳng định sau?
A. B C ⊥ A D I
B. A B ⊥ A D I
C. A I ⊥ B C D
D. A C ⊥ A D I
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tam giác ABC cân tại A có AI là đường trung tuyến nên đồng thời là đường cao:
AI ⊥ BC
+) Tương tự, tam giác BCD cân tại D có DI là đường trung tuyến nên đồng thời là đường cao:
DI ⊥ BC
+) Ta có:
a) Tam giác ABC cân đỉnh A và có I là trung điểm của BC nên AI ⊥ BC. Tương tự tam giác DBC cân đỉnh D và có có I là trung điểm của BC nên DI ⊥ BC. Ta suy ra:
BC ⊥ (AID) nên BC ⊥ AD.
b) Vì BC ⊥ (AID) nên BC ⊥ AH
Mặt khác AH ⊥ ID nên ta suy ra AH vuông góc với mặt phẳng (BCD).
Đáp án C
Ta có A D 2 = A B 2 + B D 2 = A C 2 + C D 2
⇒ Δ A B D , Δ A C D vuông cân tại B, C
Mà O là trung điểm cạnh A D ⇒ O A = O B − O C
⇒ O là tâm mặt cầu ngoại tiếp tứ diện ABCD.
Dễ thấy O A = O B − O C và Δ A B C đều cạnh a
⇒ khối chóp O . A B C là hình chóp tam giác đều
Đáp án B
Ta có ngay B sai, góc giữa (ABD) và (ADC) không nhất thiết phải bằng 90 °
Chọn A.
+) Tam giác ABC cân tại A có AI là đường trung tuyến nên đồng thời là đường cao: AI ⊥ BC (1)
+) Tam giác BCD cân tại D có DI là đường trung tuyến nên đồng thời là đường cao: DI ⊥ BC (2)
- Từ (1) và (2) suy ra BC ⊥ (ADI).