CMR 52n+1+2n+4 +2n+1 chia hết cho 23 với mọi số nguyên n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hằng đẳng thức: a^n - b^n = (a-b)[a^(n-1).b + a(n-2).b² +..+ b^(n-1)] = (a-b).p
* 5^2n - 2^n = 25^n - 2^n = (25-2)p = 23p => 5.5^2n - 5.2^n = 5.23.p
=> 5^(2n+1) - 5.2^n = 5.23p chia hết cho 23
* 2^(n+4) + 2^(n+1) = 2^n.2^4 + 2^n.2 = 2^n(2^4 + 2) = 18.2^n = 23.2^n - 5.2^n
Vậy: 5^(2n+1) + 2^(n+4) + 2^(n+1) = 5^(2n+1) - 5.2^n + 23.2^n chia hết cho 23 .
Bài 1:
b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)
\(=4n^2-9-4n^2+36n\)
\(=36n-9⋮9\)
Phân tích ra ta được: 4n2 +4n+1+8n+9
= 4n2+4n+8n+10
=4n(n+1) +8n + 8 +2
mà 4n(n+1) chia hết cho 8 (n(n+1) là tích của hai số tự nhiên liên tiếp); 8n và 8 chiaheets cho 8. Vậy còn dư 2
Nên biểu thức không chia hết cho 8 với mọi n
a, Nếu \(n=3k\left(k\in Z\right)\Rightarrow A=n^3-n=27k^3-3k⋮3\)
Nếu \(n=3k+1\left(k\in Z\right)\)
\(\Rightarrow A=n^3-n\)
\(=n\left(n-1\right)\left(n+1\right)\)
\(=\left(3k+1\right).3k.\left(3k+2\right)⋮3\)
Nếu \(n=3k+2\left(k\in Z\right)\)
\(\Rightarrow A=n^3-n\)
\(=n\left(n-1\right)\left(n+1\right)\)
\(=\left(3k+2\right)\left(n+1\right)\left(3k+3\right)⋮3\)
Vậy \(n^3-n⋮3\forall n\in Z\)
Đặt \(N=n^4-2n^3-n^2+2n=n^2\left(n^2-1\right)-2n\left(n^2-1\right)\)
\(=\left(n^2-1\right)\left(n^2-2n\right)=\left(n-1\right)\left(n+1\right)n\left(n-2\right)\)
\(\Rightarrow N\) là tích của 4 số nguyên liên tiếp nên luôn chia hết cho 12
mk làm luôn nhá ^^
tá có:A=(2n+1).(n2-3n-1)-2n3+1=\(2n^3-6n^2-2n+n^2-3n-1-2n^3+1.\)
=\(-5n^2-5n\)
Ta thấy:\(-5n⋮5\Rightarrow-5n^2⋮5\)
\(\Rightarrow-5n^2-5n⋮5\)với mọi số nguyên n
\(\Rightarrowđpcm\)
bạn tick cho mk đi rùi mk giải
bạn vào đây xem thử nè
mk cũng đã từng giải bài này ùi. mk đưa lên mạng xem rồi đọ đây là hiểu
http://giasutoan.giasuthukhoa.edu.vn/ly-thuyet-ve-dong-du-trong-chuong-trinh-toan-lop-6/