Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi H là điểm đối xứng vớ M qua AB, E là giao điểm của MH và AB. Gọi L là điểm đối xứng với M qua AC, F là giao điểm của MK và AC.
a) Xác định dạng của tứ giác AEMF, AMBH, AMCK.
b) Chứng minh H đối xứng với K qua A.
c) Tam giác vuông ABC có thêm điều kiện gì thì AEMF là hình vuông ?
a) AMBH là hình thoi (tứ giác có hai đường chéo vuông góc với nhau tại trung điểm mỗi đường)
Tương tự cũng có AMCK là hình thoi. AEMF là hình chữ nhật (tứ giác có ba góc vuông).
b) Áp dụng tính chất đối xứng trục ta có:
A H = A M , A 1 ^ = A 2 ^ và A K = A M , A 3 ^ = A 4 ^ .
Mà A 2 ^ + A 3 ^ = 900 Þ H, A, K thẳng hàng.
Lại có AH = AM = AK Þ H đối xứng với K qua A.
c) Nếu AEMF là hình vuông thì AM là đường phân giác của B A C ^ mà AM là đường trung tuyến.
Þ DABC vuông cân tại A.