K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2017

Đáp án C

Đặt t = 5 x t > 0  

Khi đó PT ⇒ t 2 - m + 2 t + 2 m + 1 = 0 ⇔ t 2 - 2 t + 1 = m t - 2   *  

Rõ ràng t = 2 không là nghiệm của phương trình

Do đó * ⇔ m = t 2 - 2 t + 1 t - 2 = t + 1 t - 2 = f t  

Xét f(t) trên tập 0 ; 2 ∪ 2 ; + ∞  ta có: f ' t = 1 - 1 t - 2 2 = 0 ⇔ [ t = 1 t = 3  

Mặt khác lim x → 0 f t = - 1 2 ; f 1 = 0 ; lim x → 2 - f t = - ∞ ; lim x → 2 + f t = + ∞ ; f 3 = 2 ; lim x → + ∞ f t = + ∞  

Lập bảng biến thiên suy ra phương trình có nghiệm khi m ∈ ( - ∞ ; 0 ] ∪ [ 2 ; + ∞ )  

Kết hợp m ∈ ℤ  và m ∈ 0 ; 2018  suy ra có 2018 giá trị của tham số m.

3 tháng 11 2018

Chọn B.

Đặt t= 5x>  0.

+ Phương trình đã cho trở thành: t2-( m+2) t+2m-1=0  suy ra   ( 2)

 ( với t= 2 phương trình vô nghiệm).

Do đó phương trình đã cho có nghiệm khi phương trình (2) có nghiệm t> 0 .

+ Lập bảng biến thiên của hàm số f(t)  dựa vào bảng biến thiên suy ra  m ≤ 0 m ≥ 4

kết hợp điều kiện m nguyên và m  ∈ [0;2018] => m  ∈ {0;4;5;6;...;2018}

Vậy nghiệm 2016 giá trị của m thỏa mãn yêu cầu bài toán ra

 

9 tháng 8 2017

NV
25 tháng 8 2021

\(\Leftrightarrow\left\{{}\begin{matrix}3.2^xlogx-12logx-2^x+4=0\left(1\right)\\5^x=m\left(2\right)\end{matrix}\right.\) và \(5^x\ge m\) (\(x>0\))

Xét (1):

\(\Leftrightarrow3logx\left(2^x-4\right)-\left(2^x-4\right)=0\)

\(\Leftrightarrow\left(3logx-1\right)\left(2^x-4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x_1=2\\x_2=\sqrt[3]{10}\end{matrix}\right.\)

\(y=5^x\) đồng biến trên R nên (2) có tối đa 1 nghiệm

 Để pt đã cho có đúng 2 nghiệm phân biệt  ta có các TH sau:

TH1: (2) vô nghiệm \(\Rightarrow m\le0\) (ko có số nguyên dương nào)

TH2: (2) có nghiệm (khác với 2 nghiệm của (1)), đồng thời giá trị của m khiến cho đúng 1 nghiệm của (1) nằm ngoài miền xác định

(2) có nghiệm \(\Rightarrow m>0\Rightarrow x_3=log_5m\)

Do \(\sqrt[3]{10}>2\) nên bài toán thỏa mãn khi: \(x_1< x_3< x_2\)

\(\Rightarrow2< log_5m< \sqrt[3]{10}\)

\(\Rightarrow25< m< 5^{\sqrt[3]{10}}\) (hơn 32 chút xíu)

\(\Rightarrow\) \(32-26+1\) giá trị nguyên

24 tháng 1 2019

12 tháng 3 2017

 

Đặt t = 2 x ( t > 0 )  phương trình trở thành: 

Xét hàm số  trên khoảng 0 ; + ∞  

 

Bảng biến thiên:

 

Với mỗi t > 0 cho một nghiệm duy nhất x = log 2 t  Vậy phương trình có hai nghiệm thực phân biệt khi và chỉ khi () có hai nghiệm phân biệt t > 0. Quan sát bảng biến thiên suy ra 

Ta đi rút gọn Sm: Có

 

Do đó  Vì vậy

 

Vậy điều kiện là

 

Có tất cả 27 số nguyên dương thoả mãn.

Chọn đáp án A. 

 

 

26 tháng 10 2018

7 tháng 8 2018

Đáp án A