K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2019

TXĐ: D = R

y’ = 3 x 2  – 4x + m; y’ = 0 ⇔ 3 x 2  – 4x + m = 0

Phương trình trên có hai nghiệm phân biệt khi:

∆’ = 4 – 3m > 0 ⇔ m < 4/3 (∗)

Hàm số có cực trị tại x = 1 thì :

y’(1) = 3 – 4 + m = 0 ⇒ m = 1 (thỏa mãn điều kiện (∗) )

Mặt khác, vì:

y’’ = 6x – 4 ⇒ y’’(1) = 6 – 4 = 2 > 0

cho nên tại x = 1, hàm số đạt cực tiểu.

Vậy với m = 1, hàm số đã cho đạt cực tiểu tại x = 1

6 tháng 2 2017

TXĐ: D = R

y’ = 3 x 2 – 4x + m; y’ = 0 ⇔ 3 x 2  – 4x + m = 0

Phương trình trên có hai nghiệm phân biệt khi:

∆ ’ = 4 – 3m > 0 ⇔ m < 4/3 (∗)

Hàm số có cực trị tại x = 1 thì :

y’(1) = 3 – 4 + m = 0 ⇒ m = 1 (thỏa mãn điều kiện (∗) )

Mặt khác, vì:

y’’ = 6x – 4 ⇒ y’’(1) = 6 – 4 = 2 > 0

cho nên tại x = 1, hàm số đạt cực tiểu.

Vậy với m = 1, hàm số đã cho đạt cực tiểu tại x = 1

13 tháng 10 2019

y′ = 3 x 2  + 2(m + 3)x + m

y′ = 0 ⇔ 3 x 2  + 2(m + 3)x + m = 0

Hàm số đạt cực trị tại x = 1 thì:

y′(1) = 3 + 2(m + 3) + m = 3m + 9 = 0 ⇔ m = −3

Khi đó,

y′ = 3 x 2  – 3;

y′′ = 6x;

y′′(1) = 6 > 0;

Suy ra hàm số đạt cực tiểu tại x = 1 khi m = 3.

GV
21 tháng 4 2017

\(y'=3x^2-4x+m\)

Để hàm số đạt cực tiểu tai x = 1 thì x = 1 là nghiệm của y' và y' đổi dấu khi đi qua x = 1.

Để x = 1 là nghiệm của y' thì:

\(3.1^2-4.1+m=0\) \(\Rightarrow m=1\)

Với m = 1. khi đó: \(y'=3x^2-4x+1\) có 2 nghiệm là \(1\)\(\dfrac{1}{3}\); \(y'\) đổi dấu từ âm sang dương khi đi qua x = 1. Vậy hàm số có cực tiểu tại x = 1.

19 tháng 12 2018

a) y′ = 3 x 2  + 2(m + 3)x + m

y′ = 0 ⇔ 3 x 2  + 2(m + 3)x + m = 0

Hàm số đạt cực trị tại x = 1 thì:

y′(1) = 3 + 2(m + 3) + m = 3m + 9 = 0 ⇔ m = −3

Khi đó,

y′ = 3 x 2  – 3;

y′′ = 6x;

y′′(1) = 6 > 0;

Suy ra hàm số đạt cực tiểu tại x = 1 khi m = 3.

b) y′ = −( m 2  + 6m) x 2  − 4mx + 3

y′(−1) = − m 2  − 6m + 4m + 3 = (− m 2  − 2m – 1) + 4 = −(m + 1)2 + 4

Hàm số đạt cực trị tại x = -1 thì :

y′(−1) = − ( m + 1 ) 2  + 4 = 0 ⇔ ( m + 1 ) 2  = 4

⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Với m = -3 ta có y’ = 9 x 2  + 12x + 3

⇒ y′′ = 18x + 12

⇒ y′′(−1) = −18 + 12 = −6 < 0

Suy ra hàm số đạt cực đại tại x = -1.

Với m = 1 ta có:

y′ = −7 x 2  − 4x + 3

⇒ y′′ = −14x − 4

⇒ y′′(−1) = 10 > 0

Suy ra hàm số đạt cực tiểu tại x = -1

Kết luận: Hàm số đã cho đạt cực đại tại x = -1 khi m = -3.

28 tháng 11 2017

Giải bài 6 trang 18 sgk Giải tích 12 | Để học tốt Toán 12

Ta có bảng biến thiên:

Giải bài 6 trang 18 sgk Giải tích 12 | Để học tốt Toán 12

Dựa vào BBT thấy hàm số đạt cực đại tại x = -m – 1.

Hàm số đạt cực đại tại x = 2 ⇔ -m – 1 = 2 ⇔ m = -3.

Vậy m = -3.

 

2 tháng 5 2019