Cho tam giác ABC. Trên tia đối của tia AB lấy điểm E sao cho AE = 2AB. Trên tia đối của tia BC lấy điểm D sao cho BD = BC. Chứng minh:
a) A là trọng tâm của tam giác CDE;
b) Đường thẳng CA đi qua trung điểm của DE.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có \(\widehat{B}=\widehat{C}\)
nên ΔABC cân tại A
hay AB=AC
b: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔABD=ΔACE
c: Xét ΔACD và ΔABE có
AC=AB
CD=BE
AD=AE
Do đó: ΔACD=ΔABE
d: Ta có: ΔABC can tại A
mà AH là đường cao
nên H là trung điểm của BC
Ta có: DB+BH=DH
CE+CH=HE
mà DB=CE
và BH=CH
nên DH=HE
hay H là trung điểm của DE
Xét ΔADE có AD=AE
nên ΔADE cân tại A
mà AH là đường trung tuyến
nên AH là tia phân giác của góc DAE
a) Xét ΔNAB và ΔNEM có
NA=NE(gt)
\(\widehat{ANB}=\widehat{ENM}\)(hai góc đối đỉnh)
NB=NM(N là trung điểm của BM)
Do đó: ΔNAB=ΔNEM(c-g-c)
b) Ta có: BC=2AB(gt)
mà BC=2BM(M là trung điểm của BC)
nên AB=BM
Xét ΔBAM có BA=BM(cmt)
nên ΔBAM cân tại B(Định nghĩa tam giác cân)
a: Xét ΔNAB và ΔNEM có
NA=NE
\(\widehat{ANB}=\widehat{ENM}\)
NB=NM
Do đó:ΔNAB=ΔNEM
b: Xét ΔMAB có BA=BM
nên ΔBAM cân tại B
c: Xét ΔAEC có
CN là đường trung tuyến
CM=2/3CN
Do đó: M là trọng tâm của ΔAEC
tự vẽ hình
a) Xét ΔADE có :
HE là đường trung tuyến của AD HA=HD )(1)
Ta thấy HC=12BC ( AH là đường trung tuyến của BC )
Mà BC = CE (gt )
⇒HC=12CE (2)
Từ (1) và (2) ⇒C là trọng tâm của ΔADE
b) Hơi khó đấy :)
Xét ΔAHB và ΔAHC có :
HAHA chung
HB=HC ( AH là đường trung tuyến của BC )
AB=AC( ΔABC cân tại A )
Do đó : ΔAHB=ΔAHC(c−c−c)
⇒AHBˆ=AHCˆ( hai góc tương ứng )
Mà AHBˆ+AHCˆ=1800
⇒AHB^=AHC^=1800/2=90o
Xét ΔAHEvà ΔHED có :
HEHE chung
HA=HD( HE là đường trung tuyến của AD )
AHEˆ=DHEˆ(=900)
Do đó : ΔAHE=ΔDHE ( hai cạnh góc vuông )
⇒AEHˆ=DEHˆ ( góc tương ứng ) (*)
Vì C là trọng tâm của ΔAED là đường trung tuyến của DE )
Xét vuông tại H có : HM là đường trung tuyến nối từ đỉnh H đến DE
⇒HM=DM (1)
Lưu ý : Trong tam giác vuông , đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền . Tức HM=12DE Mà 12DE=DM⇒HM=DM
Trở lại vào bài :
Mặt khác DM=ME(cmt)(2)
Từ (1) và (2) ⇒HM=ME
⇒ΔHME⇒ΔHME cân tại M
⇒MHEˆ=MEHˆ
Dễ thấy MEHˆ=HEAˆ(cmt)
⇒MHEˆ=HEAˆ
mà hai góc này ở vị trí so le trong
⇒HM⇒HM//AE(đpcm)
a) Ta có BD = BC, do đó EB là đường trung tuyến của tam giác CDE .
Mặt khác AE = 2AB nên A là trọng tâm của tam giác CDE.
b) Vì A là trọng tâm của tam giác CDE nên CA là đường trung tuyến, suy ra ĐPCM