Cho tứ diện ABCD có AB = x thay đổi, tất cả các cạnh còn lại có độ dài a. Tính khoảng cách giữa hai đường thẳng AB và CD trong trường hợp thể tích của khối tứ diện ABCD lớn nhất.
A. a 3 3
B. a 6 4
C. a 3 4
D. a 6 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn đáp án A
Gọi G là trọng tâm tam giác BCD => AG ⊥ (BCD)
Gọi M là trung điểm CD => BM ⊥ CD
Kẻ MK ⊥ AB (K ∈ AB)
Mặt khác MK ⊥ CD vì CD ⊥ (SBM)
=> MK là đường vuông góc chung.
=> d(AB;CD) = MK
Khi đó M là trung điểm AB
Vậy khoảng cách giữa AB và CD bằng
Gọi M, N lần lượt là trung điểm các cạnh AB và CD.
Ta có tam giác ANB cân tại N,
-> MN vuông góc AB.
Tam giác ADB = Tam giác ACB, ta có:
MD=MC -> Tam giác MDC cân tại M.
-> MN vuông góc CD
Do đó ta suy ra MN là đoạn vuông góc chung của cạnh AB và CD.
Ta có khoảng cách từ cạnh AB đến CD là MN:
MN= căn bậc a (AN^2-AM^2)= √2/2
Đáp số: khoảng cách giữa cạnh AB và CD là √2/2
Gọi M và N lần lượt là trung điểm của AB và CD. Khi đó:
\(\Delta ACD\)và \(\Delta BCD\)là 2 tam giác đều cạnh 3 nên AN=BN=\(\frac{3\sqrt{3}}{2}\)
Đồng thời \(\Delta ABC=\Delta ABD\)nên CM=DM
Do đó MAB và NCD là 2 tam giác cân tại M và N
Vậy MN _|_ BA và MN _|_ CD
Ta có MN=\(\sqrt{NB^2-MB^2}=\sqrt{\frac{27}{4}-\frac{25}{4}}=\frac{\sqrt{2}}{2}\)
Chọn A
Gọi M, N lần lượt là trung điểm của BD, AC. Đặt BD = 2x, AC = 2y (x, y > 0).
Đáp án B
Cách giải:
Gọi M là trung điểm của CD. Kẻ AH vuông góc mặt phẳng (BCD) (H thuộc (BCD)) ⇒ H ∈ BM, AH ⊥ HM
VABCD lớn nhất khi và chỉ khi AH có độ dài lớn nhất, tức là khi H trùng M
Hai tam giác ACD, BCD đều, cạnh a, có đường cao AM, BM bằng a 3 2
Tam giác ABM vuông cân tại A, lấy N là trung điểm của AB ⇒ MN ⊥ AB
Mà MN ⊂ (AMB) ⊥ CD ⇒ MN ⊥ CD ⇒ MN là đoạn vuông góc chung của AB và CD
Khoảng cách giữa hai đường thẳng AB và CD là: