So sánh: 2 300 và 3 200
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: Sửa đề: 1/3^200
1/2^300=(1/8)^100
1/3^200=(1/9)^100
mà 1/8>1/9
nên 1/2^300>1/3^200
b: 1/5^199>1/5^200=1/25^100
1/3^300=1/27^100
mà 25^100<27^100
nên 1/5^199>1/3^300
\(2^{300}=\left(2^3\right)^{100}=8^{100}< 9^{100}=\left(3^2\right)^{100}=3^{200}\)
\(2^{300}=\left(2^3\right)^{100}=8^{100}\\ 3^{200}=\left(3^2\right)^{100}=9^{100}\\ Vì:8^{100}< 9^{100}\Rightarrow2^{300}< 3^{200}\)
`a)2^{300}=(2^3)^100=8^100`
`3^200=(3^2)^100=9^100`
Vì `9^100>8^100`
`=>2^300<3^200`
`b)3xx24^10`
`=3.(3.8)^10`
`=3^{11}.8^10`
`=3^{11}.2^30`
`2^300=2^{30}.2^{270}`
`=2^{30}.8^{90}`
Vì `3^11<8^90`
`=>3^{11}.2^30<8^{90}.2^30=2^300`
`=>3xx24^{10}<2^300+3^20+4^30`
a.
\(3^{200}=\left(3^2\right)^{100}=9^{100}>8^{100}=\left(2^3\right)^{100}=2^{300}\)
Vậy \(3^{200}>2^{300}\)
b.
\(5^{200}=\left(5^2\right)^{100}=25^{100}< 32^{100}=\left(2^5\right)^{100}=2^{500}\)
Vậy \(5^{200}< 2^{500}\)
Ta có : \(3^{200}=3^{2.100}=\left(3^2\right)^{100}=9^{100}\)
\(2^{300}=2^{3.100}=\left(2^3\right)^{100}=8^{100}\)
\(\Rightarrow9^{100}>8^{100}\)
\(\Rightarrow3^{200}>2^{300}\)
ta có :
2300=(23)100=8100
3200=(32)100=9100
vì 8100<9100 nên 2300<3200
\(2^{300}=\left(2^3\right)^{100}\) \(\Rightarrow8^{100}\)
\(3^{200}=\left(3^2\right)^{100}\) \(\Rightarrow9^{100}\)
\(\Rightarrow8^{100}<9^{100}\)\(\Leftrightarrow2^{300}<3^{200}\)
TC:(1/2)^300=(1/8)^100
(1/3)^200=(1/9)^100
Vì (1/8)^100>(1/9)^100 =>(1/2)^300 >(1/3)^200
3200 = 32.100 = 9100 (1)
2300 = 23.100 = 8100 (2)
Từ (1) và(2) ta có: 3200>2300
3200 = 32.100 = (32)100 = 9100
2300 = 23.100 = (23)100 = 8100
9100 > 8100 ( vì 9 > 8 ) nên 3200 > 2300.