K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2017

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Mặt phẳng (ABO) qua tâm O của hình cầu nên cắt mặt cầu theo đường tròn lớn qua A và B. Gọi I là trung điểm của đoạn AB ta có OI ⊥ AB. Vì AB // OH nên AIOH là hình chữ nhật.

Do đó

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy AB = 2AI = r

Chú ý: Có thể nhận xét rằng tam giác OAB cân tại O (OA = OB) và có góc ∠ OAB = 60 °  nên OAB là tam giác đều và suy ra AB = OA = OB = r.

12 tháng 3 2019

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Gọi H là hình chiếu vuông góc của tâm O trên mặt phẳng ( α ). Theo giả thiết ta có ∠ OAH = 30 °

Do đó:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy diện tích của thiết diện tạo bởi ( α ) và hình cầu là:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

22 tháng 5 2018

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có AH ⊥ DC. Do đó khi CD di động, điểm H luôn luôn nhìn đọan thẳng AI dưới một góc vuông. Vậy tập hợp các điểm H là đường tròn đường kính AI nằm trong mặt phẳng ( α ).

11 tháng 3 2018

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Diện tích tam giác BCD bằng:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Diện tích này lớn nhất khi AI // CD.

22 tháng 7 2019

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Tam giác ADC vuông tại A nên AD 2 = DC 2 - AC 2  (1)

Tam giác ABC vuông tại A nên BC 2 = AC 2 + AB 2  (2)

Từ (1) và (2) ta suy ra AD 2 + BC 2 = DC 2 + AB 2  (3)

Ta lại có:

AC 2 = DC 2 - AD 2 và BD 2 = AD 2 + AB 2  (4)

DC 2 = 4 r 2 - h 2 ,   AB 2 = 4 h 2  (5)

Từ (4) và (5) ta có:

AC 2 + BD 2 = DC 2 + AB 2 = 4 r 2 - h 2 + 4 h 2 = 4 r 2  (6)

Từ (3) và (6) ta có:  AD 2 + BC 2  =  AC 2 + BD 2  (không đổi)

27 tháng 12 2017

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Theo giả thiết ta có: ∠A′M′M = ∠A′AM = ∠A′M1M = 90o

Do đó 5 điểm A, A’, M, M’, M1 cùng thuộc mặt cầu (S) tâm O, với O là trung điểm của A’M và có bán kính r = A′M2

Mặt khác ta có A’M2 = A’A2 + AM2

Trong đó

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Mặt cầu tâm O có bán kính

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Diện tích của mặt cầu tâm O là:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

22 tháng 10 2018

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có ( α ) là (ABB’). Vì OO’ // ( α ) nên khoảng cách giữa OO’ và ( α ) bằng khoảng cách từ O đến ( α ). Dựng OH ⊥ AB′ ta có OH ⊥ ( α ).

Vậy khoảng cách cần tìm là Giải sách bài tập Toán 12 | Giải sbt Toán 12

3 tháng 11 2019

20 tháng 5 2017

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

a) Gọi H là hình chiếu vuông góc của tâm O trên mặt phẳng \(\left(\alpha\right)\).

Theo giả thiết ta có \(\widehat{OAH}=30^0\)

Do đó : \(HA=OA\cos30^0=r\dfrac{\sqrt{3}}{2}\)

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

19 tháng 12 2017

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vì mặt phẳng (P) qua A và vuông góc với Δ′ nên AA’ thuộc (P). Vì M thuộc  ∆  mà d là hình chiếu vuông góc của  ∆  trên (P) nên M 1 thuộc d. Vì MA ⊥ AA′ ⇒  M 1 A  ⊥  AA′

Mặt khác  M 1 A  ⊥  M′A′ nên ta suy ra  M 1 A  ⊥  (AA′M′). Do đó  M 1 A  ⊥  M′A và điểm A thuộc mặt cầu đường kính M’ M 1

Ta có M′A′  ⊥  (P) nên M′A′  ⊥  A′ M 1 , ta suy ra điểm A’ cũng thuộc mặt cầu đường kính M’ M 1

Ta có (Q) // (P) nên ta suy ra

M M 1  ⊥ (Q) mà MM’ thuộc (Q), do đó  M 1 M  ⊥  MM′

Như vậy 5 điểm A, A’, M, M’,  M 1  cùng thuộc mặt cầu (S) có đường kính M’ M 1 . Tâm O của mặt cầu (S) là trung điểm của đoạn M’ M 1

Ta có M ' M 1 2 = M ' A ' 2 + A ' M 1 2  = M ' A ' 2 + A ' A 2 + AM 1 2 = x 2 + a 2 + x 2 cot 2 α vì M M 1  = x

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bán kính r của mặt cầu (S) bằng (M′ M 1 )/2 nên

Giải sách bài tập Toán 12 | Giải sbt Toán 12