K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2018

Đáp án A

Tập xác định của hàm số:  D = 0 ; 4

Ø  Xét tử số, đặt  g x = x x + x + 12

Em thấy  g x > 0     ∀ x ∈ 0 ; 4 g ' x = 3 x 2 x + 1 2 x + 12 > 0 ⇒ g x  là hàm dương và đồng biến trên [0;4]

Ø  Xét mẫu số, xét  h x = 5 − x + 4 − x

Em thấy  h x > 0     ∀ x ∈ 0 ; 4 h ' x = − 1 2 5 − x + − 1 2 4 − x < 0

=> h(x) là hàm dương và nghịch biến trên [0;4]

=>  1 h x là hàm đồng biến trên [0;4] ⇒ y = g x . 1 h x  là hàm đồng biến trên [0;4]

 

⇒ maxy = y 4 = 12 ;    miny = y 0 = 2 15 − 4 3

8 tháng 7 2017

Chọn đáp án C

 

a: Trường hợp 1: m=0

Bất phương trình sẽ là \(0x^2+3\cdot0\cdot x+0+1>0\)

=>1>0(luôn đúng)

Trường hợp 2: m<>0

\(\text{Δ}=\left(3m\right)^2-4m\left(m+1\right)\)

\(=9m^2-4m^2-4m=5m^2-4m\)

Để phương trình có nghiệm đúng với mọi số thực x thì \(\left\{{}\begin{matrix}m\left(5m-4\right)< 0\\m>0\end{matrix}\right.\Leftrightarrow0< m< \dfrac{4}{5}\)

Vậy: 0<=m<4/5

b: Trường hợp 1: m=4

\(g\left(x\right)=\left(4-4\right)\cdot x^2+\left(2\cdot4-8\right)x+4-5=-1< 0\)(luôn đúng)

Trường hợp 2: m<>4

\(\text{Δ}=\left(2m-8\right)^2-4\left(m-4\right)\left(m-5\right)\)

\(=4m^2-32m+64-4\left(m^2-9m+20\right)\)

\(=4m^2-32m+64-4m^2+36m-80\)

=4m-16

Để bất phương trình luôn âm thì \(\left\{{}\begin{matrix}4m-16< 0\\m-4< 0\end{matrix}\right.\Leftrightarrow m< 4\)

Vậy: m<=4

7 tháng 6 2018

Chọn D

Hệ bất phương trình vô nghiệm  khi và chỉ khi m - 1  3 hay m  4

31 tháng 3 2019

Chọn đáp án A.

Để bất phương trình luôn có nghiệm thì 

\(\left\{{}\begin{matrix}\left(m-1\right)^2-4\cdot1\cdot5< 0\\1>=0\end{matrix}\right.\Leftrightarrow\left(m-1\right)^2< 20\)

\(\Leftrightarrow-2\sqrt{5}+1< x< 2\sqrt{5}+1\)

2: \(\text{Δ}=1^2-4\cdot\left(-1\right)\cdot\left(-m\right)=1-4m\)

Để bất phương trình vô nghiệm thì \(\left\{{}\begin{matrix}1-4m< 0\\-1< 0\end{matrix}\right.\Leftrightarrow m>\dfrac{1}{4}\)

1 tháng 7 2019

Chọn B