Cho tam giác ABC vuông tại A (AB < AC) M là trung điểm của BC. a) AB = 6 , AM = 5 Tính BC, AC. b) D, E là hình chiếu của M lên AB và AC. Chứng minh tứ giác ADME là hình chữ nhật.. c) F là điểm đối xứng của M qua E. Chứng minh tứ giác AMCF là hình thoi. d) Ke đường cao AH của tam giác ABC Chứng minh tam giác DHE vuông tại H.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình tự vẽ nhe fen :
a)
Tú giác ADME có:
MD // AB (gt)
ME // AC (gt)
góc A = 90 độ (gt)
=> tứ giác ADME là hình chữ nhật
b)
Vì Tứ giác ADME là hình chữ nhật => Góc MDA = Góc A = Góc MEA = góc EMD = 90 độ ( tính chất hình chữ nhật )
Tam giác ADM có:
Góc MDA = 90 độ
=> Tam giác ADM vuông góc tại D
Áp dụng định lí pitago vào tam giác ADM ta có:
\(AM^2=AD^2+MD^2\Rightarrow MD=8\left(cm\right)\)
c)
Giả sử Tam giác ABC vuông cân:
=> theo bài ra ta có: ME//AC, MD//AB, góc A vuông => Tứ giác ADME là hình chữ nhật (1)
Xét Tam giác ABC có:
ME//AC (gt)
M là trung điểm của BC (gt)
=> ME là đường trung bình của tam giác ABC
=> ME=1/2 AC (tc đường trung bình)
Ta lại có:
tam giác ABC có:
MD//AB (gt)
M là trung điểm của BC (gt)
=> MD là đường trung bình của tam giác ABC
=> MD=1/2AB
Mà Tam giác ABC vuông cân => AC=AB (tính chất tam giác cân)
=> MD=ME=1/2AB=1/2AC (2)
Từ (1) và (2) => Tứ giác ADME là Hình vuông
=> Để tứ giác ADME là hình vuông thì tam giác ABC phải là Tam giác Vuông cân tại A
Ta có D, E là hình chiếu của M trên AB, AC
=> DM ⊥ AB và ME ⊥ AC Mà AB ⊥ AC
=> ADME là hình chữ nhật
a: \(BC=\sqrt{8^2+6^2}=10\left(cm\right)\)
AM=BC/2=5cm
b: Xét tứ giác AEMF có
góc AEM=góc AFM=góc FAE=90 độ
nen AEMF là hình chữ nhật
c: Xét tứ giác AMBN có
F là trung điểm chung của AB và MN
MA=MB
Do đó: AMBN là hình thoi
b: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{EAD}=90^0\)
Do đó: ADHE là hình chữ nhật
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
Do đó: ADME là hình chữ nhật
b: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{EAD}=90^0\)
Do đó: ADME là hình chữ nhật