Tập nghiệm của bất phương trình x 2 - x > x + 1 là:
A. [-1;0)
B. - ∞ ; - 1 3
C. [ - 1 ; - 1 3 )
D. - ∞ ; - 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 2 x + 1 > 3 x - 2 - x - 3 < 0 ⇔ - x > - 3 - x < 3 ⇔ x < 3 x > - 3 ⇔ - 3 < x < 3
Điều kiện: x > 2.
Với điều kiện trên , phương trình đã cho trở thành:
x - 3 = x - 3 ⇔ x - 3 ≥ 0 ⇔ x ≥ 3
Kết hợp điều kiện, tập nghiệm của phương trình là S = [ 3 ; + ∞ )
Ta có:
x - 3 x ≤ 0 ⇔ x 1 - 3 x ≤ 0 ⇔ [ x = 0 x > 0 1 - 3 x ≤ 0 ⇔ [ x = 0 x > 0 3 x ≥ 1 ⇔ [ x = 0 x > 0 x ≥ 1 3 ⇔ [ x = 0 x > 0 x ≥ 1 9 ⇔ [ x = 0 x ≥ 1 9
Ta có :
1 x - 1 ≥ 1 x + 2 - 1 ⇔ 1 x - 1 - 1 x + 2 + 1 ≥ 0 ⇔ x + 2 - x - 1 + x - 1 . x + 2 x - 1 . x + 2 ≥ 0 ⇔ 3 + x 2 + 2 x - x - 2 x - 1 . x + 2 ≥ 0 ⇔ x 2 + x + 1 x - 1 . x + 2 ≥ 0 ( * )
Lại có: x 2 + x + 1 = x 2 + 2 . x . 1 2 + 1 4 + 3 4 = x + 1 2 2 + 3 4 > 0 ∀ x
Do đó, (*) ⇔ x - 1 . x + 2 > 0 ⇔ [ x > 1 x < - 2
Tập nghiệm của bất phương trình: S = - ∞ ; - 2 ∪ 1 ; + ∞
Chọn A.
x 2 - x > x + 1 ⇔ [ x + 1 < 0 x 2 - x ≥ 0 x + 1 ≥ 0 x 2 - x > 0 ⇔ [ x < - 1 [ x ≥ 1 x ≤ 0 x ≥ - 1 x 2 - x > x 2 + 2 x + 1
[ x < - 1 x ≥ - 1 - 3 x > 1 ⇔ [ x < - 1 x ≥ - 1 x < - 1 3 ⇔ [ x < - 1 - 1 ≤ x ≤ - 1 3 ⇔ x < - 1 3
Chọn B.