Cho hình trụ có thiết diện qua trục là hình vuông cạnh 2a. Mặt phẳng (P) song song với trục và cách trục một khoảng a 2 . Tính diện tích thiết diện của hình trụ cắt bởi (P)
A. 2 3 a 2
B. a 2
C. 4 a 2
D. πa 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Diện tích thiết diện của hình trụ là S = 2 a .2 a 2 − a 2 2 = 2 3 a 2
Đáp án C.
Gọi thiết diện mặt cắt là hình vuông ABCD.
Xét mặt đáy tâm O như hình vẽ. Vì thiết diện qua trục là hình vuông cạnh 2a nên chiều cao của hình trụ OO' = 2a = BC và OA = a.
⇒ A B = 2 O A 2 - O M 2 = a 3
Diện tích thiết diện cần tính: A B . C D = 2 a 2 3 .
Đáp án B
Gọi hình vuông thiết diện ABCD và O là tâm đường tròn đáy của hình trụ
Gọi H là trung điểm của AB, ta có
O H = a 2 ⇒ A H = O A 2 − A H 2 = a 2 − a 2 2 = a 3 2 ⇒ A B = a 3
Chiều cao của khối trụ chính là độ dài cạnh của hình vuông bằng h = a 3
Thể tích khối trụ là V = π r 2 h = π a 3 3
Đáp án D
Cạnh hình vuông bằng 2 a ⇒ h T = 2 a
Bán kính đáy R = a 3 2 + 2 a 2 2 = 2 a
Suy ra V = π R 2 h = 8 π a 3