Hệ số của x 7 trong khai triển của nhị thức Niu tơn 3 - x 9 là
A. - C 9 7
B. C 9 7
C. 9 C 9 7
D. -9 C 9 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Số hạng trong khai triển có dạng là :
\(T_{k+1}=C_{10}^k.x^{10-k}.\left(-2\right)^k\)
b, Số hạng chứa \(x^8\) \(\Leftrightarrow x^{10-k}=x^8\)
\(\Leftrightarrow10-k=8\)
\(\Leftrightarrow k=10-8\)
\(\Leftrightarrow k=2\)
Hệ số của số hạng chứa \(x^8\)là :
\(T_3=C_{10}^2.\left(-2\right)^2=180\)
\(\left(3+2x\right)^9=\sum\limits^n_{k=0}C^k_9.\left(2x\right)^{9-k}.3^k\)
\(\Rightarrow9-k=7\Rightarrow k=2\)
Vậy hệ số \(x^7\) là \(C^2_9.2^7.3^2=41472\)
Ta có:
Chọn x=1. Ta có tổng hệ số bằng:
Lại có:
Số hạng không chứa x suy ra
Do đó số hạng không chứa x là:
Chọn D.
Đáp án A
Vậy n = 10.
Ta có số hạng tổng quát trong khai triển trên là
Vì a là hệ số của số hạng không chứa x trong khai triển nên ta cho
15/ Mũ 4=> có 4+1=5 số hạng=> số hạng chính giữa là: \(C^2_4.3^{4-2}.x^2.2^2y^2=58x^2y^2\)
18/ \(x.x^k=x^7\Rightarrow k=6\)
\(C^6_9.3^6.2^3=489888\)
19/ \(C^7_7+C^7_8.\left(-1\right)^7+C^7_9.2^2=...\)
C18 , c19 là lm sao vậy ạ ? Mk ko hiểu 2 bài này nơi