K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2018

Chọn C

Để xếp 9  em học sinh thành một hàng dọc ta thực hiện ba hành động liên tiếp

* Sắp xếp 3  học sinh lớp B. Có 3! cách.

* Sắp xếp 2 học sinh lớp A đứng cạnh các học sinh lớp B sao cho giữa hai học sinh lớp A không có học sinh lớp B. Có A 4 1 .2! cách.

* Lần lượt sắp xếp 4 học sinh lớp C còn lại đứng cạnh các học sinh trên. Có A 9 4  cách.

Vậy có tất cả 3! A 4 1 .2!. A 9 4

Bình luận: Trong đề thi thử THPT chuyên Thái Nguyên lần 2 trong câu hỏi này không có đáp án 145152 mà thay bởi đáp án 145112. Tôi thiết nghĩ lỗi do người làm đề đã đánh máy nên đã tự ý đổi lại một đáp án khác mà tôi nghĩ  chính xác hơn.

28 tháng 2 2017

Đáp án C

Phương pháp:

Sử dụng quy tắc vách ngăn.

Cách giải:

Xếp 2 học sinh lớp A có 2! cách xếp, khi đó tạo ra 3 khoảng trống trong đó có 1 khoảng trống giữa 2 bạn lớp A.

Xếp bạn lớp B thứ nhất vào 1 trong 2 khoảng trống không ở giữa 2 bạn lớp A có 2 cách, khi đó tạo ra 4 khoảng trống trong đó có 1 khoảng trống giữa 2 bạn lớp A.

Xếp bạn lớp B thứ 2 vào 1 trong 3 khoảng trống không ở giữa 2 bạn lớp A có 3 cách, khi đó tạo ra 5 khoảng trống trong đó có 1 khoảng trống giữa 2 bạn lớp A.

Xếp bạn lớp B thứ 3 vào 1 trong 4 khoảng trống không ở giữa 2 bạn lớp A có 4 cách, khi đó tạo ra 6 khoảng trống trong đó có 1 khoảng trống giữa 2 bạn lớp A.

Xếp bạn lớp C thứ nhất vào 1 trong 6 khoảng trống (kể cả khoảng trống giữa 2 bạn lớp A) có 6 cách, khi đó tạo ra 7 khoảng trống.

Cứ như vậy ta có :

Xếp bạn lớp C thứ hai có 7 cách.

Xếp bạn lớp C thứ ba có 8 cách.

Xếp bạn lớp C thứ tư có 9 cách.

Vậy số cách xếp 9 học sinh trên thỏa mãn yêu cầu là 2!.2.3.4.5.6.7.8.9 = 145152 cách.

18 tháng 1 2019

Đáp án C

Gọi k là số học sinh lớp C ở giữa hai học sinh lớp A với k = 0 ; 1 ; 2 ; 3 ; 4  

Chọn 2 học sinh lớp A xếp 2 đầu có 2 ! cách. Chọn k học sinh lớp C xếp vào giữa 2 học sinh lớp A có A 4 k   cách. Vậy có 2 ! . A 4 k cách xếp để được hàng  A C ... C   A ⏟ k

Coi cụm A C ... C   A ⏟ k là 1 vị trí cùng với 9 − k + 2 học sinh còn lại thành 8 − k vị trí.

Xếp hàng cho các vị trí này có 8 − k !  cách. Vậy với mỗi k như trên có 2 ! . A 4 k . 8 − k ! cách xếp.

Vậy tổng số cách xếp thỏa mãn đề bài là ∑ k = 0 4 2 ! . A 4 k . 8 − k ! = 145152 cách.

 

4 tháng 5 2018



18 tháng 1 2019

Xếp 2 học sinh lớp A có 2! cách xếp, khi đó tạo ra 3 khoảng trống trong đó có 1 khoảng trống giữa 2 bạn lớp A.

Xếp bạn lớp B thứ nhất vào 1 trong 2 khoảng trống không ở giữa 2 bạn lớp A có 2 cách, khi đó tạo ra 4 khoảng trống trong đó có 1 khoảng trống giữa 2 bạn lớp A.

Xếp bạn lớp B thứ 2 vào 1 trong 3 khoảng trống không ở giữa 2 bạn lớp A có 3 cách, khi đó tạo ra 5 khoảng trống trong đó có 1 khoảng trống giữa 2 bạn lớp A.

Xếp bạn lớp B thứ 3 vào 1 trong 4 khoảng trống không ở giữa 2 bạn lớp A có 4 cách, khi đó tạo ra 6 khoảng trống trong đó có 1 khoảng trống giữa 2 bạn lớp A.

Xếp bạn lớp C thứ nhất vào 1 trong 6 khoảng trống (kể cả khoảng trống giữa 2 bạn lớp A) có 6 cách, khi đó tạo ra 7 khoảng trống.

Cứ như vậy ta có :

Xếp bạn lớp C thứ hai có 7 cách.

Xếp bạn lớp C thứ ba có 8 cách.

Xếp bạn lớp C thứ tư có 9 cách.

Vậy số cách xếp 9 học sinh trên thỏa mãn yêu cầu là 2!.2.3.4.5.6.7.8.9=145152 cách.

Chọn đáp án C.

10 tháng 11 2018

25 tháng 11 2019

Đáp án C

Số cách xếp ngẫu nhiên là 10! cách.=

Ta tìm số cách xếp thoả mãn:

* Trước tiên xếp 2 học sinh lớp A có 2! cách.

Vì giữa hai học sinh lớp A không có học sinh lớp B nên chỉ có thể xếp học sinh lớp C vào giữa hai học sinh lớp A vừa xếp:

* Vậy chọn k ∈ 0 , 1 , 2 , 3 , 4 , 5 học sinh lớp C rồi xếp vào giữa hai học sinh lớp A có A 5 k  cách, ta được một nhóm X.

* Xếp 10 - (2+k) = 8- k học sinh còn lại với nhóm X có (9 -k)! cách.

Vậy tất cả có ∑ 2 k = 0 5 ! A 5 k ( 9   - k ) ! = 1451520  cách xếp thỏa mãn

Xác suất cần tính bằng  1451520 10 ! = 2 5

25 tháng 7 2019

25 tháng 11 2019

Chọn C

Số cách xếp ngẫu nhiên là 10! cách.

Ta tìm số cách xếp thoả mãn:

* Trước tiên xếp 2 học sinh lớp A có 2! cách.

Vì giữa hai học sinh lớp A không có học sinh lớp B nên chỉ có thể xếp học sinh lớp C vào giữa hai học sinh lớp A vừa xếp:

* Vậy chọn  học sinh lớp C rồi xếp vào giữa hai học sinh lớp A có  A 5 k  cách, ta được một nhóm X.

* Xếp  học sinh còn lại với nhóm X có (9-k)! cách.

Vậy tất cả có  cách xếp thỏa mãn.

Xác suất cần tính bằng