K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2017

Chọn A

[Phương pháp trắc nghiệm]

Hàm số có 3 điểm cực trị khi m > 1 3  

Áp dụng công thức:

Phương trình đường tròn ngoại tiếp ∆ A B C là:

 

Thay vào ta có phương trình:

 

 

Sử dụng chức năng SOLVE ,

tìm ra nghiệm duy nhất thỏa mãn là m = 3

NV
30 tháng 6 2021

- Với \(m=0\Rightarrow y=-x^2-2\) chỉ có cực đại (thỏa mãn)

- Với \(m\ne0\) hàm chỉ có cực đại khi:

\(\left\{{}\begin{matrix}m< 0\\m\left(2m-1\right)\ge0\end{matrix}\right.\) \(\Leftrightarrow m< 0\)

Vậy \(m\le0\)

23 tháng 6 2021

Vì hs y = (m-1)x +m +3 đi qua điểm (1; -4) nên ta đc :

-4 = (m-1) + m+3

<=> -4 = 2m + 2

<=> m =-3

23 tháng 6 2021

1) Đặt tên cho dễ giải nè:

(d1) : y= (m-1) x + m+ 3

(d2) : y = -2x + 1

(d1) // (d2) <=> m - 1 = -2 và m+ 3 \(\ne\)1

<=> m = -1 và m \(\ne\)-2 

13 tháng 8 2017

Chọn D.

TXĐ: D = R.

Đồ thị hàm số có 3 điểm cực trị ⇔ y' = 0 có ba nghiệm phân biệt  ⇔ m -1 > 0  ⇔ m > 1(*) 

3 điểm cực trị của đồ thị hàm số là: A(0;1), 

Hàm số đã cho là hàm số chẵn nên đồ thị hàm số nhận Oy làm trục đối xứng

Ta có 

Kết hợp với điều kiện (*) => m = 2 

Làm theo bào toán trắc nghiệm như sau:

Hàm số đã cho có 3 điểm cực trị khi ab < 0  

Chỉ có đáp án D thỏa mãn.

NV
21 tháng 11 2021

a.

ĐTHS song với với đường thẳng đã cho khi:

\(\left\{{}\begin{matrix}m-2=-1\\m+3\ne3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m=1\\m\ne0\end{matrix}\right.\) \(\Rightarrow m=1\)

b.

Gọi A là giao điểm của ĐTHS và \(y=2x+4\Rightarrow y_A=2\)

\(\Rightarrow2x_A+4=2\Rightarrow x_A=-1\)

\(\Rightarrow A\left(-1;2\right)\)

Thế tọa độ A vào (1):

\(-1\left(m-2\right)+m+3=2\Leftrightarrow5=2\left(ktm\right)\)

Vậy ko tồn tại m thỏa mãn yêu cầu đề bài

7 tháng 7 2019

25 tháng 11 2018