K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2018

Đáp án A

Phương pháp:

Sử dụng phương pháp tọa độ hóa.

Cách giải:

Gắn hệ trục tọa độ như hình vẽ.

Trong đó, B(2a;0;0), C(2a;2a;0), E(a;0;0), S(0;0;a)

 

Gọi I(x0;y0;z0) là tâm của mặt cầu ngoại tiếp hình chóp S.BEC. Khi đó, IS2 = IB2 = IC2 = IE2

3 tháng 10 2018

Đáp án B

 

17 tháng 4 2017

19 tháng 8 2017

17 tháng 10 2019

Đáp án D

Ta có R = S A 2 4 + R d 2 = a 2 + a 2 2 2 = a 3 2 ⇒ S = 4 π R 2 = 6 π a 2  

15 tháng 11 2018

Đáp án C

Gọi O là trung điểm của SD. Ta có:

A D = D M = a 2  và A D = 2 a ⇒ A M ⊥ D M  

Lại có D M ⊥ S A ⇒ D M ⊥ S A M ⇒ D M ⊥ S M  

Vì tam giác SAD vuông tại A nên OS = OD = OA. Tương tự với tam giác SMD nên OS = OD = OM.

Vậy O là tâm mặt cầu ngoại tiếp hình chóp S.ADM. Khi đó R = S D 2 = S A 2 + D A 2 2 = a 6 2 .

10 tháng 11 2019

Đáp án A

Gọi N là trung điểm của MD, khi đó N là tâm đường tròn ngoại tiếp tam giác vuông ADM.

Dựng đường thẳng Δ đi qua N và song song với SAΔ là trục đường tròn ngoại tiếp tam giác ADM.

Dựng mặt phẳng trung trực (P) của SA, P ∩ Δ = I , khi đó I là tâm của mặt cầu ngoại tiếp hình chóp SADM, bán kính R = IA .

24 tháng 7 2019

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Tam giác CED là tam giác vuông cân tại E nên trục của đường tròn đi qua ba điểm C, E, D là đường thẳng ∆ đi qua trung điểm I của đoạn thẳng CD và song song với SA.

Gọi M, N lần lượt là trung điểm của SE và SC. Ta có mặt phẳng (ABNM) là mặt phẳng trung trực của đoạn SE. Vậy tâm O của mặt cầu ngoại tiếp hình chóp S.CDE chính là giao điểm của Δ và mp(ABNM). Gọi K là trung điểm của AB thì KN // AM và do đó KN //(SAE). Ta có IK // AD nên IK // (SAE).

Vậy KN và  ∆  đồng phẳng và ta có O là giao điểm cần tìm.

Chú ý rằng OIK là tam giác vuông cân, vì ∠ OKI =  ∠ MAE = 45 °

Ta có OI = IK, trong đó

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó, bán kính mặt cầu ngoại tiếp hình chóp S.CDE là:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

20 tháng 5 2017

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

21 tháng 2 2019

Đáp án A

ABCD là hình thanh cân có AB = BC = CD = a; AD = 2a nên M là tâm của đáy ABCD.

SA = AD = 2a; SA ⊥ (ABCD) => tam giác SAD vuông cân tại A nên tâm mặt cầu ngoại tiếp hình chóp S.ABCD là trung điểm N của SD