Biết F(x) là nguyên hàm của hàm số f x = x cos x - sin x x 2 Hỏi đồ thị của hàm số y=F(x) có bao nhiêu điểm cực trị trên khoảng (0;2018π)?
A. 2019
B. 1
C. 2017
D. 2018
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B
+ Với x= - 1: ta có : f’ (-1) = 0
Giá trị của hàm số y= f’(x) đổi dấu từ âm sang dương khi qua x= -1
=> Hàm số y= f(x) đạt cực tiểu tại điểm x= -1
+ Tại điểm x=0 hoặc x= 2
- Đạo hàm tại 2 điểm đó bằng 0.
- Giá trị của hàm số y= f’(x) không đổi dấu khi đi qua điểm đó. Nên x= 0; x= 2 không là điểm cực trị của hàm số
Chọn D
Phương pháp:
Từ đồ thị hàm số của f'(x) ta lập bảng biến thiên, từ đó xác định điểm cực trị của hàm số.
Hoặc ta sử dụng cách đọc đồ thị hàm số f'(x)
Số giao điểm của đồ thị hàm số f'(x) với trục hoành bằng số điểm cực trị của hàm số f'(x). (không tính các điểm tiếp xúc)
Nếu tính từ trái sang phải đồ thị hàm số f''=(x) cắt trục hoành theo chiều từ trên xuống thì đó là điểm cực đại của hàm số f(x).
Nếu tính từ trái sang phải đồ thị hàm số f'(x) cắt trục hoành theo chiều từ trên xuống thì đó là điểm cực tiểu của hàm số f(x).
Cách giải:
Từ đồ thị hàm số f'(x) ta thấy có một giao điểm với trục hoành (không tính điểm tiếp xúc) nên hàm số f(x) có một cực trị.
Chọn A
Cách 1: Từ đồ thị hàm số của ta thấy có hai cực trị dương nên hàm số lấy đối xứng phần đồ thị hàm số bên phải trục tung qua trục tung ta được bốn cực trị, cộng thêm giao điểm của đồ thị hàm số với trục tung nữa ta được tổng cộng là cực trị.
Chọn đáp án C.