Cho ba lực cùng tác động vào một vật tại điểm M và vật đứng yên. Cho biết cường độ của hai lực F1, F2 đều là 100N và ∠AMB = 60o. Tìm cường độ và hướng của lực F3.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A
Để vật đứng yên, ba lực đó phải thoả mãn hợp lực bằng không, tức là F 1 , F 2 cùng chiều nhau và F 3 ngược chiều với hai lực trên.
Để vật đứng yên, ba lực đó phải thỏa mãn F 1 → , F 3 → cùng chiều nhau và F 2 ⇀ ngược chiều với hai lực trên. Khi đó hợp lực của chúng F = F 1 + F 3 - F 2 = 0
⇒ Đáp án B
C
Để vật đứng yên, ba lực đó phải thoả mãn F 2 , F 3 cùng chiều nhau và F 1 ngược chiều với hai lực trên.
B
Ba lực cùng phưomg có cường độ lần lượt là F 1 = 20N, F 2 = 60N và F3 = 40N tác dụng vào một vật. Để vật đứng yên, ba lực đó phải thoả mãn là F 1 , F 3 cùng chiều nhau và F 2 ngược chiều với hai lực trên.
Khi đó hợp lực của chúng F = F 1 + F 3 – F 2 = 0.
a) Do vật đứng yên nên \(\overrightarrow{F_1}+\overrightarrow{F_2}+\overrightarrow{F_3}=\overrightarrow{0}\Leftrightarrow\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{0}\).
Suy ra M là trọng tâm tam giác ABC.
Gọi O là trung điểm của AB. Theo quy tắc trung điểm ta có:
\(\overrightarrow{MA}+\overrightarrow{MB}=2\overrightarrow{MO}=\overrightarrow{ME}\).
Do tam giác MAB cân tại M và \(\overrightarrow{AMB}=60^o\) nên tam giác MAB đều và \(MO\perp AB\).
Áp dụng định lý Pi-ta-go trong tam giác MOB ta có:
\(MO=\sqrt{MA^2-OA^2}=\sqrt{100^2-50^2}=50\sqrt{3}\).
Suy ra: \(ME=2MO=2.50\sqrt{3}=100\sqrt{3}\).
b)
\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{0}\Leftrightarrow\overrightarrow{MC}=-\left(\overrightarrow{MA}+\overrightarrow{MB}\right)\)
Vì vậy véc tơ \(\overrightarrow{MC}\) ngược hướng với véc tơ \(\overrightarrow{MA}+\overrightarrow{MB}\).
Theo kết quả câu a ta suy ra: \(\left|\overrightarrow{ME}\right|=100\sqrt{3}\).
Nên véc tơ \(\overrightarrow{MC}\) có độ dài \(100\sqrt{3}\) và ngược hướng với véc tơ \(\overrightarrow{MA}+\overrightarrow{MB}\).
Vì vậy lực \(\overrightarrow{F_3}\) có cường độ \(100\sqrt{3}N\) và ngược hướng với véc tơ \(\overrightarrow{MA}+\overrightarrow{MB}\).
Ta biểu diễn bằng hai vec tơ như hình vẽ.
Khi đó (C là đỉnh còn lại của hình bình hành MACB).
+ Tính MC : Gọi I là trung điểm của AB ⇒ I là trung điểm của MC.
Δ MAB có MA = MB = 100 và góc AMB = 60º nên là tam giác đều
⇒ đường cao
⇒ MC = 2.MI = 100√3.
Vec tơ là vec tơ đối của có hướng ngược với và có cường độ bằng 100√3N.