Cho góc nhọn xOy, điểm A thuộc tia Ox. Dựng đường tròn tâm I tiếp xúc với Ox tại A và có tâm I nằm trên Oy.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Phân tích
Giả sử đường tròn tâm I dựng được thỏa mãn điều kiện bài toán.
− Đường tròn tâm I tiếp xúc với Ox tại A nên I nằm trên đường thẳng vuông góc với Ox kẻ từ A.
− Tâm I nằm trên tia Oy nên I là giao điểm của Oy và đường thẳng vuông góc với Ox tại A.
* Cách dựng
− Dựng đường vuông góc với Ox tại A cắt Oy tại I.
− Dựng đường tròn (I; IA).
* Chứng minh
Ta có: I thuộc Oy, OA ⊥ IA tại A.
Suy ra Ox là tiếp tuyến của đường tròn ( I;IA)
hay (I; IA) tiếp xúc với Ox.
* Biện luận
Vì góc xOy là góc nhọn nên đường thẳng vuông góc với Ox tại A luôn cắt tia Oy nên tâm I luôn xác định và duy nhất.
* Cách dựng:
- Dựng đường trung trực của DE cắt Ax tại M
- Dựng đường tròn tâm M bán kính MD
* Chứng minh:
Theo cách dựng ta có: M ∈ Ox
MD = ME (tính chất đường trung trực)
Suy ra: E ∈ (M; MD).
* Phân tích
Giả sử đường tròn tâm I dựng được thỏa mãn điều kiện bài toán.
− Đường tròn tâm I tiếp xúc với Ox tại A nên I nằm trên đường thẳng vuông góc với Ox kẻ từ A.
− Tâm I nằm trên tia Oy nên I là giao điểm của Oy và đường thẳng vuông góc với Ox tại A.
* Cách dựng
− Dựng đường vuông góc với Ox tại A cắt Oy tại I.
− Dựng đường tròn (I; IA).
* Chứng minh
Ta có: I thuộc Oy, OA ⊥ IA tại A.
Suy ra Ox là tiếp tuyến của đường tròn ( I;IA)
hay (I; IA) tiếp xúc với Ox.
* Biện luận
Vì góc xOy là góc nhọn nên đường thẳng vuông góc với Ox tại A luôn cắt tia Oy nên tâm I luôn xác định và duy nhất.
* Phân tích
Giả sử đường tròn (I) dựng được thỏa mãn điều kiện bài toán
- Đường tròn (I) tiếp xúc với Ox và Oy nên điểm I nằm trên tia phân giác của góc xOy
- Đường tròn (I) tiếp xúc với Ox tại A nên I nằm trên đường vuông góc với Ox kẻ từ A
Vậy I là giao điểm của tia phân giác góc xOy và đường thẳng vuông góc với Ox tại A
* Cách dựng
- Dựng tia phân giác của góc xOy
- Dựng đường thẳng vuông góc với Ox tại A cắt tia phân giác của góc xOy tại I
- Dựng đường tròn (I; IA)
* Chứng minh
Ta có: Ox ⊥ IA tại A nên Ox là tiếp tuyến của (I)
I nằm trên tia phân giác của góc xOy nên I cách đều hai cạnh Ox, Oy. Khi đó khoảng cách từ I đến Oy bằng IA nên Oy cũng là tiếp tuyến của đường tròn (I).
Vậy đường tròn (I) đi qua A và tiếp xúc với hai cạnh của góc xOy.
* Biện luận
Vì góc xOy nhỏ hơn 180 ° nên góc tạo bởi một cạnh của góc với tia phân giác là góc nhọn. Khi đó đường thẳng vuông góc với Ox tại A luôn cắt tia phân giác của góc xOy.
a) Ta có đường tròn tâm A có bán kính bằng đưởng tròn tâm B. Vậy bán kính đường tròn tâm A = bán kính đường tròn tâm B => AI=BI
Xét tam giác AOI và tam giác BOI, ta có:
OA=OB(gt)
AI=BI
OI: cạnh ching
Do đó tam giác AOI = tam giác BOI
=> Góc AOI = góc BOI
Vậy OI là tia phân giác cảu góc xOy (đpcm)
b) ta có ANO=OAM( cùng chắn AM)
mà OAM=ONB(c/m câu a)
=> ANO=BNO => ON là phân giác ANB
góc ABO=ONB (cùng chắn cung MB)
góc ABO=OAB
suy ra: ONB=OAB
tứ giác AOBN có góc N và góc A cùng nhìn BO dưới 1 góc bằng nhau => AOBN nội tiếp
* Phân tích
Giả sử đường tròn tâm I dựng được thỏa mãn điều kiện bài toán.
- Đường tròn tâm I tiếp xúc với Ox tại A nên I nằm trên đường thẳng vuông góc với Ox kẻ từ A
- Tâm I nằm trên tia Oy nên I là giao điểm của Oy và đường thẳng vuông góc với Ox tại A
* Cách dựng
- Dựng đường vuông góc với Ox tại A cắt Oy tại I
- Dựng đường tròn (I; IA)
* Chứng minh
Ta có: I thuộc Oy; OA ⊥ IA tại A
Suy ra Ox là tiếp tuyến của đường tròn (I; IA) hay (I; IA) tiếp xúc với Ox.
* Biện luận
Vì góc (xOy) là góc nhọn nên đường thẳng vuông góc với Ox tại A luôn cắt tia Oy nên tâm I luôn xác định và duy nhất.